Nonlinear periodic problems superlinear at $+\infty$ and sublinear at $-\infty$

Sergiu Aizicovici, Nikolaos S. Papageorgiou and Vasile Staicu

Abstract: We consider a nonlinear periodic problem driven by a nonlinear, nonhomogeneous differential operator with a reaction which exhibits an asymmetric growth at $+\infty$ and at $-\infty$. It is $(p-1)$-superlinear near $+\infty$ and $(p-1)$-sublinear near $-\infty$. A particular case of our problem is that of periodic equations with the scalar p-Laplacian and an asymmetric nonlinearity.

Using variational methods and Morse theory, we prove the existence of at least three nontrivial solutions.

Keywords: Asymmetric reaction, nonhomogeneous differential operator, C-condition, critical groups, homotopy equivalent, mountain pass theorem.

MSC2010: 34B15, 34B18, 34C25, 58E05.

Dedicated to the memory of Professor Francesco S. De Blasi

1 Introduction

In this paper we examine the following nonlinear periodic problem

$$\begin{align*}
- (a (|u'(t)|)) u'(t)' &= f(t, u(t)) \text{ a.e. on } T := [0, b] \\
u(0) &= u(b), \ u'(0) = u'(b).
\end{align*}$$

(1.1)

In the above problem, the differential operator is in general nonhomogeneous and incorporates as a special case the scalar p-Laplacian. The reaction $f(t, x)$ is a Carathéodory function (i.e., for all $x \in \mathbb{R}$, $t \to f(t, x)$ is measurable and for a.a. $t \in T$, $x \to f(t, x)$ is continuous).

Our aim is to study the existence and multiplicity of solutions when the reaction $f(t, x)$ exhibits an asymmetric behavior near $+\infty$ and near $-\infty$ and it is $(p-1)$–superlinear in the positive direction (i.e., as $x \to +\infty$) and $(p-1)$–sublinear in the negative direction (i.e., as $x \to -\infty$).
Multiplicity results for nonlinear periodic problems driven by the scalar p-Laplacian were proved by Aizicovici-Papageorgiou-Staicu [1], [3], [4], Del Pino-Manasevich-Murua [8], Gasinski [11], Gasinski-Papageorgiou [13], and Yang [20].

In all the above mentioned papers, the reaction of the problem exhibits a similar growth near $+\infty$ and $-\infty$. Recently, Aizicovici-Papageorgiou-Staicu [5], [6], studied periodic eigenvalue problems driven by a nonhomogeneous differential operator.

Equations with an asymmetric reaction were studied in the context of semilinear (i.e., $p=2$) Neumann problems. We mention the works of Dong [9], de Figueiredo-Ruf [7], Perera [17] and Villegas [19]. Of these, only Perera [17] proves a multiplicity result.

Our approach uses variational methods based on critical point theory together with suitable truncation techniques and Morse theory (critical groups).

2 Mathematical Background and Hypotheses

Let $(X, \|\cdot\|)$ be a Banach space and $(X^*, \|\cdot\|_*)$ its topological dual. By $\langle \cdot, \cdot \rangle$ we denote the duality brackets for the pair (X^*, X), and \rightharpoonup denotes weak convergence in X.

Let $\varphi \in C^1(X)$. A real number c is said to be a critical value of φ if there exists $x^* \in X$ such that $\varphi'(x^*) = 0$ and $\varphi(x^*) = c$. We say that $\varphi \in C^1(X)$ satisfies the C-condition, if the following is true:

"every sequence $\{x_n\}_{n \geq 1} \subseteq X$ such that $\{\varphi(x_n)\}_{n \geq 1}$ is bounded in \mathbb{R} and $$(1 + \|x_n\|) \varphi'(x_n) \to 0$$ in X^* as $n \to \infty$ admits a strongly convergent subsequence."

This is in general weaker than the more common Palais-Smale condition. Nevertheless, the C-condition suffices to prove a deformation theorem and from it derive the minimax theory of certain critical values of $\varphi \in C^1(X)$. One such minimax theorem, which we recall for future use, is the so called "mountain pass theorem".

Theorem 2.1. If $\varphi \in C^1(X)$ satisfies the C-condition, $x_0, x_1 \in X$, $\rho > 0$, $\|x_1 - x_0\| > \rho$, $\max \{\varphi(x_0), \varphi(x_1)\} < \inf \{\varphi(x) : \|x - x_0\| = \rho\} = \eta_\rho$, and $c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \varphi(\gamma(t))$ where

$$\Gamma = \{\gamma \in C([0,1], X) : \gamma(0) = x_0, \gamma(1) = x_1\},$$

then $c \geq \eta_\rho$ and c is a critical value of φ.
Let \((Y_1, Y_2)\) be a topological pair such that \(Y_2 \subseteq Y_1 \subseteq X\). For every integer \(k \geq 0\), by \(H_k(Y_1, Y_2)\) we denote the \(k^{th}\)-relative singular homology group with integer coefficients for the pair \((Y_1, Y_2)\). Recall that \(H_k(Y_1, Y_2) = 0\) for all integers \(k < 0\).

Let \(\varphi \in C^1(X)\) and \(c \in \mathbb{R}\). We introduce the following sets:

\[
\begin{align*}
\varphi^c &= \{x \in X : \varphi(x) \leq c\}, \\
\varphi^c &= \{x \in X : \varphi(x) < c\}, \\
K_\varphi &= \{x \in X : \varphi'(x) = 0\}, \\
K_\varphi^c &= \{x \in K_\varphi : \varphi(x) = c\}.
\end{align*}
\]

The critical groups of \(\varphi\) at an isolated critical point \(x \in X\) with \(\varphi(x) = c\) (i.e., \(x \in K_\varphi^c\)) are defined by

\[
C_k(\varphi, x) = H_k(\varphi^c \cap U, (\varphi^c \cap U) \setminus \{x\}) \text{ for all } k \geq 0,
\]

where \(U\) is a neighborhood of \(x\) such that \(K_\varphi \cap \varphi^c \cap U = \{x\}\). The excision property of singular homology implies that the above definition of critical groups is independent of the particular choice of the neighborhood \(U\). Suppose that \(\varphi \in C^1(X)\) satisfies the \(C^-\)condition and \(\inf \varphi(K_\varphi) > -\infty\). Let \(c < \inf \varphi(K_\varphi)\). The critical groups of \(\varphi\) at infinity, are defined by

\[
C_k(\varphi, \infty) = H_k(X, \varphi^c) \text{ for all } k \geq 0.
\]

The second deformation theorem (see for example, Gasinski-Papageorgiou [12], p. 628) implies that the above definition of critical groups of \(\varphi\) at infinity is independent of the choice of the level \(c < \inf \varphi(K_\varphi)\).

Suppose that \(K_\varphi\) is finite. We define

\[
\begin{align*}
M(t, x) &= \sum_{k \geq 0} \text{rank } C_k(\varphi, x) t^k \text{ for all } t \in \mathbb{R}, \ x \in K_\varphi, \\
P(t, \infty) &= \sum_{k \geq 0} \text{rank } C_k(\varphi, \infty) t^k \text{ for all } t \in \mathbb{R}.
\end{align*}
\]

The Morse relation says that

\[
\sum_{x \in K_\varphi} M(t, x) = P(t, \infty) + (1 + t) Q(t) \tag{2.1}
\]

where \(Q(t) = \sum_{k \geq 0} \beta_k t^k\) is a formal series in \(t \in \mathbb{R}\) with nonnegative integer coefficients.
In the analysis of problem (1.1), we will use the Sobolev space
\[W_{\text{per}}^{1,p}(T) = \{ u \in W^{1,p}(T) : u(0) = u(b) \}, \]
with \(1 < p < \infty\). The space \(W_{\text{per}}^{1,p}(T)\) is embedded compactly into \(C(T)\), and so, the evaluations at \(t = 0\) and \(t = b\) make sense.

In the sequel, for notational economy we set
\[W := W_{\text{per}}^{1,p}(T). \]

In addition to the Sobolev space \(W\) we will also use the Banach space
\[\widehat{C}^1(T) = C^1(T) \cap W. \]

This is an ordered Banach space with positive cone
\[\widehat{C}_+ = \{ u \in \widehat{C}^1(T) : u(t) \geq 0 \text{ for all } t \in T \}. \]

This cone has a nonempty interior, given by
\[\text{int } \widehat{C}_+ = \{ u \in \widehat{C}_+ : u(t) > 0 \text{ for all } t \in T \}. \]

Throughout this paper, the norm of the Banach space \(W\) will be denoted by \(\| . \|\), i.e.,
\[\| u \| = \left(\| u \|_p^p + \| u' \|_p^p \right)^{\frac{1}{p}} \text{ for all } u \in W, \]
with \(\| . \|_p\) being the norm of \(L^p(T)\).

Given \(x \in \mathbb{R}\), we set \(x^\pm = \max\{\pm x, 0\}\). We have
\[x = x^+ - x^-, \text{ and } |x| = x^+ + x^- . \]

Then for every \(u \in W\), we define \(u^\pm(\cdot) = u(\cdot)^\pm\) and we have
\[u = u^+ - u^-, \quad |u| = u^+ + u^- \text{ and } u^\pm \in W. \]

Also, if \(h : T \times \mathbb{R} \rightarrow \mathbb{R}\) is a measurable function, then we define
\[N_h(u)(\cdot) = h(\cdot, u(\cdot)) \text{ for all } u \in W \]
(the Nemytskii map corresponding to \(h(t, x)\)).

Finally, by \(\| . \|_1\) we denote the Lebesgue measure on \(\mathbb{R}\).

Our hypotheses on the map \(a\) in problem (1.1) are the following:
H (a): $a : (0, \infty) \to (0, \infty)$ is a C^1-function such that:

(i) $x \to a (x) x$ is strictly increasing on $(0, \infty)$, $a (x) x \to 0$ as $x \to 0^+$ and

$$\frac{a'(x) x}{a(x)} \to C > -1 \text{ as } x \to 0^+;$$

(ii) there exists $\tilde{C} > 0$ and $1 < p < \infty$ such that

$$|a (x) x| \leq \tilde{C} \left(1 + |x|^{p-1}\right) \text{ for all } x \in \mathbb{R};$$

(iii) there exists $C_0 > 0$ such that

$$a'(x) x^2 \geq C_0 x^{p-1} \text{ for all } x > 0;$$

(iv) if $G_0 (x) = \int_0^x a(s) \, ds$ for all $x \geq 0$, then

$$pG_0 (x) - a(x) x^2 \geq 0 \text{ for all } x > 0.$$

Evidently $G_0 (.)$ is strictly convex and strictly increasing on $(0, \infty)$. We set

$$G(x) = G_0 (|x|) \text{ for all } x \in \mathbb{R}.$$

Then $G(.)$ is strictly convex and for $x \neq 0$ we have

$$G'(x) = G'_0 (|x|) \frac{x}{|x|} = a(|x|) x.$$

So $G(.)$ is the primitive of the function $x \to a (|x|) x$, $x \in \mathbb{R}$. Since $G_0 (.)$ is convex and $G_0 (0) = 0$, we have

$$G_0 (x) \leq a(x) x^2 \text{ for all } x > 0. \quad (2.2)$$

Using (2.1) and hypotheses **H** (a) (ii), (iii), we obtain

$$\frac{C_0}{p} |x|^p \leq G(x) \leq C_1 (1 + |x|^p) \text{ for all } x \in \mathbb{R} \text{ and some } C_1 > 0. \quad (2.3)$$
Examples: The following functions satisfy the above hypotheses:

\[
\begin{align*}
 a_1(x) &= |x|^{p-2}x \text{ with } 1 < p < \infty, \\
a_2(x) &= |x|^{p-2}x + |x|^{q-2}x \text{ with } 1 < q < p < \infty, \\
a_3(x) &= (1 + x^2)^{\frac{p-2}{2}}x \text{ with } 1 < p < \infty, \\
a_4(x) &= |x|^{p-2}x + \frac{|x|^{p-2}x}{1 + |x|^p} \text{ with } 1 < p < \infty.
\end{align*}
\]

The corresponding potential (primitive) functions are:

\[
\begin{align*}
 G_1(x) &= \frac{1}{p} |x|^p, \\
 G_2(x) &= \frac{1}{p} |x|^p + \frac{1}{q} |x|^q, \\
 G_3(x) &= \frac{1}{p} \left[(1 + x^2)^{\frac{q}{2}} - 1 \right], \\
 G_4(x) &= \frac{1}{p} |x|^p + \ln (1 + |x|^p).
\end{align*}
\]

Note that \(a_1(x) \) corresponds to the scalar \(p \)-Laplacian, \(a_2(x) \) corresponds to the scalar \((p,q)\)-Laplacian, and \(a_3(x) \) corresponds to the generalized scalar \(p \)-mean curvature operator.

Let \(A : W \to W^* \) be the nonlinear map defined by

\[
\langle A(u), v \rangle = \int_0^b a \left(|u'(t)| \right) u'(t) v'(t) \, dt \text{ for all } u, v \in W. \tag{2.4}
\]

The following result can be found in Papageorgiou-Rocha-Staicu [16].

Proposition 2.2. If hypotheses \(\mathbf{H}(a) \) hold, then the nonlinear operator \(A : W \to W^* \) defined by (2.4) is bounded (i.e., it maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone, too), and of type \((S)_+\), i.e., if \(u_n \wto u \) in \(W \) and

\[
\limsup_{n \to \infty} \langle A(u_n), u_n - u \rangle \leq 0,
\]

then \(u_n \to u \) in \(W_0^{1,p}(\Omega) \).

Let \(f_0 : T \times \mathbb{R} \to \mathbb{R} \) be a Carathéodory function such that

\[
|f_0(t,x)| \leq a(t) \left(1 + |x|^{r-1} \right) \text{ for a.a. } t \in T, \text{ all } x \in \mathbb{R},
\]
Periodic problems superlinear at $+\infty$ and sublinear at $-\infty$

with $a \in L^1(T)_+$ and $1 < r < \infty$. We set

$$F_0(t, x) = \int_0^x f_0(t, s) \, ds$$

and consider the C^1–functional $\psi_0 : W \to \mathbb{R}$ defined by

$$\psi_0(u) = \int_0^b G(u'(t)) \, dt - \int_0^b F_0(t, u(t)) \, dt$$

for all $u \in W$.

The following result can be found in Aizicovici-Papageorgiou-Staicu [6]).

Proposition 2.3. If hypotheses $H(a)$ hold and $u_0 \in W$ is a local $\widehat{C}^1(T)$-minimizer of ψ_0 (i.e., there exists $\rho_0 > 0$ such that $\psi_0(u_0) \leq \psi_0(u_0 + h)$ for all $h \in \widehat{C}^1(T)$ with $\|h\|_{\widehat{C}^1(T)} \leq \rho_0$), then $u_0 \in \widehat{C}^1(T)$ and it is a local W-minimizer of ψ_0, (i.e., there exists $\rho_1 > 0$ such that $\psi_0(u_0) \leq \psi_0(u_0 + h)$ for all $h \in W$ with $\|h\| \leq \rho_1$).

The hypotheses on the reaction $f(t, x)$ are the following:

$H(f)$: $f : T \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that $f(t, 0) = 0$ a.e. on T and

1. there exist $a \in L^1(T)_+$ and $p < r < \infty$ such that
 $$|f(t, x)| \leq a(t) \left(1 + |x|^{r-1}\right)$$
 for a.a. $t \in T$, all $x \in \mathbb{R}$;

2. $\lim_{x \to +\infty} \frac{F(t, x)}{x^p} = +\infty$ uniformly for a.a. $t \in T$, and there exist $\tau > r - p$ and $\beta_0 > 0$ such that
 $$\beta_0 \leq \liminf_{x \to +\infty} \frac{f(t, x) - pF(t, x)}{x^{\tau}}$$
 uniformly for a.a. $t \in T$,

where

$$F(t, x) := \int_0^x f(t, s) \, ds.$$
(iii) there exist functions \(\hat{\theta}, \theta \in L^\infty (T) \) such that:

\[
\hat{\theta} (t) \leq \theta (t) \leq 0 \quad \text{for a.a.} \ t \in T, \ \theta \neq 0,
\]

\[
\hat{\theta} (t) \leq \lim \inf_{x \to -\infty} \frac{pF(t,x)}{|x|^p} \leq \lim \sup_{x \to +\infty} \frac{pF(t,x)}{|x|^p} \leq \theta (t)
\]

uniformly for a.a. \(t \in T \),

\[
\lim \sup_{x \to -\infty} [pF(t,x) - f(t,x)x] < +\infty
\]

uniformly for a.a. \(t \in T \);

(iv) there exist constants \(\tilde{\xi}_0, \delta_0 > 0 \) such that

\[
F(t,x) \leq 0 \quad \text{for a.a.} \ t \in T, \ \text{all} \ |x| \leq \delta_0, \ F \left(t, -\tilde{\xi}_0 \right) dt < 0
\]

and for every \(\rho > 0 \), there exists \(\hat{\xi}_\rho > 0 \) such that for a.a. \(t \in T \),

\[
x \to f(t,x) + \hat{\xi}_\rho |x|^{p-2} x
\]

is nondecreasing on \([-\rho, \rho] \).

Remarks: Hypotheses \(H(f)(ii), (iii) \) reveal the asymmetric character of the nonlinearity \(f(t,.) \). By virtue of hypothesis \(H(f)(ii) \), near \(+\infty, x \to f(t,x) \) is \((p-1) \)–superlinear. However, note that here we do not use the usual in such cases Ambrosetti-Rabinowitz condition (unilateral version). Instead, we employ a weaker requirement.

Hypothesis \(H(f)(iii) \) implies that for a.a. \(t \in T, \) near \(-\infty, x \to f(t,x) \) is \((p-1) \)–sublinear. So, we have, a different growth for \(f(t,.) \) in the positive and negative direction, respectively.

3 Three Solutions Theorem

In this section, we establish the existence of three nontrivial solutions for problem (1.1). To this end, let \(\varphi : W \to \mathbb{R} \) be the energy functional for problem (1.1) defined by

\[
\varphi(u) = \int_0^b G(u'(t)) \, dt - \int_0^b F(t,u(t)) \, dt, \ \text{for all} \ u \in W.
\]
Evidently \(\varphi \in C^1(W) \). Also, we consider the following perturbations-truncations of \(f(t,.) \):

\[
\begin{align*}
\hat{f}_+(t,x) &= \begin{cases}
0 & \text{if } x \leq 0, \\
 f(t,x) + x^{p-1} & \text{if } x > 0,
\end{cases} \\
\hat{f}_-(t,x) &= \begin{cases}
 f(t,x) + |x|^{p-2} x & \text{if } x < 0 \\
0 & \text{if } x \geq 0.
\end{cases}
\end{align*}
\]

Both are Carathéodory functions. We set

\[
\hat{F}_\pm(t,x) = \int_0^x \hat{f}_\pm(t,s) \, ds
\]

and introduce the \(C^1 \)-functionals \(\hat{\varphi}_\pm : W \to \mathbb{R} \) by

\[
\hat{\varphi}_\pm(u) = \int_0^b G(u'(t)) \, dt + \frac{1}{p} \|u\|_p^p - \int_0^b \hat{F}_\pm(t,u(t)) \, dt, \text{ for all } u \in W.
\]

Proposition 3.1. If hypotheses \(H(a) \) and \(H(f) \) hold, then the functional \(\varphi \) satisfies the \(C^- \) condition.

Proof. Let \(\{u_n\}_{n \geq 1} \) be a sequence in \(W \) such that

\[
|\varphi(u_n)| \leq M_1 \text{ for some } M_1 > 0, \text{ all } n \geq 1
\]

and

\[
(1 + \|u_n\|) \varphi'(u_n) \to 0 \text{ in } W^* \text{ as } n \to \infty.
\]

From (3.3), we have

\[
\left| \langle A(u_n), h \rangle - \int_0^b f(t,u_n) \, h \, dt \right| \leq \frac{\varepsilon_n \|h\|}{1 + \|u_n\|} \text{ for all } h \in W,
\]

with \(\varepsilon_n \to 0^+ \). In (3.4), we choose \(h = u_n^+ \in W \). Then

\[
- \int_0^b a \left(|(u_n^+)'| \right) \left((u_n^+)' \right)^2 dt + \int_0^b f(t,u_n^+) \, u_n^+ \, dt \leq \varepsilon_n \text{ for all } n \geq 1.
\]

(3.5)
From (3.2) we have
\[
\begin{align*}
\int_0^b pG \left((u_n^+) \right) dt &+ \int_0^b pG \left(-(u_n^-) \right) dt \\
\int_0^b pF \left((u_n^+) \right) dt &- \int_0^b pF \left(t, -(u_n^-) \right) dt \\
\leq pM_1 & \text{ for all } n \geq 1.
\end{align*}
\] (3.6)

Adding (3.5) and (3.6), we obtain
\[
\begin{align*}
\int_0^b \left[pG \left((u_n^+) \right) - a \left(\left| (u_n^+) \right| \right) \left((u_n^+) \right)^2 \right] dt \\
+ \int_0^b \left[f \left(t, u_n^+ \right) u_n^+ - pF \left(t, u_n^+ \right) \right] dt \\
+ \int_0^b pG \left(-(u_n^-) \right) dt &- \int_0^b pF \left(t, -u_n^- \right) dt \\
\leq pM_1 & \text{ for all } n \geq 1.
\end{align*}
\] (3.7)

By virtue of hypothesis \(\mathbf{H}(f)\) \((iii)\), given \(\varepsilon > 0\), we can find \(a_\varepsilon \in L^1 (T)\) such that
\[
F \left(t, x \right) \leq \frac{1}{p} \left(\theta \left(t \right) \varepsilon \right) |x|^p + a_\varepsilon \left(t \right) \text{ for a.a. } t \in T, \text{ all } x \leq 0.
\] (3.8)

Using (3.8) in (3.7), we obtain
\[
\begin{align*}
\int_0^b \left[pG \left((u_n^+) \right) - a \left(\left| (u_n^+) \right| \right) \left((u_n^+) \right)^2 \right] dt \\
+ \int_0^b \left[f \left(t, u_n^+ \right) u_n^+ - pF \left(t, u_n^+ \right) \right] dt \\
+ C_0 \left\| (u_n^-) \right\|^p \left[- \int_0^b \theta \left(t \right) u_n^- \right|^{p} dt - \varepsilon \left\| u_n^- \right\|^p - C_2 \\
\leq pM_1 & \text{ for some } C_2 > 0, \text{ all } n \geq 1,
\end{align*}
\]
Periodic problems superlinear at $+\infty$ and sublinear at $-\infty$

(see (3.8) and (2.3)), hence

\[
\int_0^b \left[pG\left(\left(u^+_n \right) \right) - a\left(\left(\left(u^+_n \right) \right) \right) \left(\left(u^+_n \right) \right)^2 \right] dt
\]

\[
+ \int_0^b \left[f\left(t, u^+_n \right) u^+_n - pF\left(t, u^+_n \right) \right] dt + \xi_0 \left\| u^-_n \right\|^p
\]

\[
\leq pM_1 + C_2 =: C_3 \text{ for all } n \geq 1, \text{ some } \xi_0 > 0
\]

(see Aizicovici-Papageorgiou-Staicu [6], Lemma 2.1), therefore

\[
\int_0^b \left[f\left(t, u^+_n \right) u^+_n - pF\left(t, u^+_n \right) \right] dt \leq C_3 \text{ for all } n \geq 1 \text{ (see } H(a) (iv) \).
\]

Hypotheses $H(f)(i), (ii)$ imply that we can find $\beta_1 \in (0, \beta_0)$ and $a_1 \in L^1(T)_+$ such that

\[
\beta_1 x^r - a_1(t) \leq f(t, x) x - pF(t, x) \text{ for a.a. } t \in T, \text{ all } x \geq 0.
\]

(3.10)

Returning to (3.9) and using (3.10), we obtain

\[
\beta_1 \left\| u^+_n \right\| \leq M_2 \text{ for some } M_2 > 0, \text{ all } n \geq 1,
\]

hence

\[
\left\{ u^+_n \right\}_{n \geq 1} \subset L^r(T) \text{ is bounded.}
\]

(3.11)

In (3.4) we choose $h = u^+_n \in W$ and use hypothesis $H(a)(iii)$ to arrive at

\[
C_0 \left\| \left(u^+_n \right) \right\|^p - \int_0^b f\left(t, u^+_n \right) u^+_n dt \leq \varepsilon_n \text{ for all } n \geq 1, \text{ (see (2.3)).}
\]

(3.12)

By virtue of $H(f)(i)$ we have

\[
f\left(t, u^+_n(t) \right) u^+_n(t) \leq a(t) \left(u^+_n(t) + u^+_n(t) \right) \text{ for a.a. } t \in T, \text{ all } n \geq 1.
\]

(3.13)

Using (3.13) in (3.12) we obtain

\[
\left\| \left(u^+_n \right) \right\|^p \leq \varepsilon_n + C_5 \left(\left\| u^+_n \right\| + \left\| u^+_n \right\|^r \right) \text{ for some } C_5 > 0, \text{ all } n \geq 1.
\]

(3.14)
From hypothesis $\textbf{H}(f) (ii)$ it is clear that we can always assume that $\tau \leq r < \infty$. So, we can find $t \in [0, 1)$ such that

$$\frac{1}{r} = \frac{1 - t}{\tau}.$$ \hspace{1cm} (3.15)

Invoking the interpolation inequality (see, for example, Gasinski-Papageorgiou [12], p. 905), we have

$$\|u_n^+\|_r \leq \|u_n^+\|_\tau^{1-t} \|u_n^+\|_\infty^t$$ for all $n \geq 1,$

hence

$$\|u_n^+\|_r \leq C_6 \|u_n^+\|^{tr}$$ for some $C_6 > 0$, all $n \geq 1$ \hspace{1cm} (3.16)

(see (3.11)). Using (3.16) in (3.14) we have

$$\left\| (u_n^+)' \right\|_p^p \leq C_7 \left(1 + \|u_n^+\| + \|u_n^+\|^{tr} \right)$$ for some $C_7 > 0$, all $n \geq 1,$

therefore

$$\|u_n^+\|_p^p \leq C_8 \left(1 + \|u_n^+\| + \|u_n^+\|^{tr} \right)$$ for some $C_8 > 0$, all $n \geq 1$ \hspace{1cm} (3.17)

(see (3.11) and Gasinski-Papageorgiou [12], p. 227)). From (3.15) we have

$$tr = r - \tau < p$$ (see hypothesis $\textbf{H}(f) (ii)$).

So, from (3.17) it follows that

$$\{ u_n^+ \}_{n \geq 1} \subset W$$ is bounded. \hspace{1cm} (3.18)

Then from (3.7), (3.18) and hypotheses $\textbf{H}(a) (iv)$, $\textbf{H}(f) (i)$, we have

$$\int_0^b pG \left(- (u_n^-)' \right) dt - \int_0^b F \left(t, -u_n^- \right) dt \leq M_3$$ for some $M_3 > 0$, all $n \geq 1.$

Using (3.18) and Lemma 2.1 of Aizicovici-Papageorgiou-Staicu [6], we have

$$\xi_0 \|u_n^-\|_p^p \leq M_4$$ for some M_4, $\xi_0 > 0$, all $n \geq 1,$

hence

$$\{ u_n^- \}_{n \geq 1} \subset W$$ is bounded. \hspace{1cm} (3.19)

From (3.18) and (3.19) it follows that $\{ u_n \}_{n \geq 1} \subset W$ is bounded and so, we may assume that

$$u_n \overset{w}{\rightarrow} u \text{ in } W \text{ and } u_n \rightarrow u \text{ in } C(T).$$ \hspace{1cm} (3.20)
In (3.4) we choose $h = u_n - u \in W$, pass to the limit as $n \to \infty$ and use (3.20). Then
\[
\lim_{n \to \infty} \langle A(u_n), u_n - u \rangle = 0,
\]
therefore
\[
u_n \to u \text{ in } W
\]
(see Proposition 2.2). This proves that the functional φ satisfies the C–condition.

Proposition 3.2. If hypotheses $H(a)$ and $H(f)$ hold, then the functional $\hat{\varphi}_+$ satisfies the C–condition.

Proof. Let $\{u_n\}_{n \geq 1}$ be a sequence in W such that
\[
|\hat{\varphi}_+(u_n)| \leq M_5 \text{ for some } M_5 > 0, \text{ all } n \geq 1. \tag{3.21}
\]
and
\[
(1 + \|u_n\|) \hat{\varphi}_+'(u_n) \to 0 \text{ in } W^* \text{ as } n \to \infty. \tag{3.22}
\]
From (3.22) we have
\[
\left| \langle A(u_n), h \rangle + \int_0^b |u_n|^{p-2} u_n h dt - \int_0^b \hat{f}_+(t, u_n) h dt \right|
\leq \frac{\varepsilon_n \|h\|}{1 + \|u_n\|} \text{ for all } h \in W, \text{ with } \varepsilon_n \to 0^+.
\tag{3.23}
\]
In (3.23), we choose $h = -u_n^- \in W$. Then from hypothesis $H(a)(iii)$ and (3.1), we have
\[
C_0 \left\| \left(u_n^- \right)' \right\|^p_p + \|u_n^-\|^p_p \leq \varepsilon_n \text{ for all } n \geq 1
\]
and hence
\[
u_n^- \to 0 \text{ in } W \text{ as } n \to \infty. \tag{3.24}
\]
From (3.21) and (3.24) we have
\[
\int_0^b pG \left((u_n^+)' \right) dt + \|u_n^+\|^p_p - \int_0^b p\hat{F}(t, u_n^+) dt \leq M_6
\tag{3.25}
\]
for some $M_6 > 0$, all $n \geq 1$.\[\square\]
Also, if in (3.23), we choose \(h = u_n^+ \in W \), then
\[
- \int_0^b a \left(\left| \left(u_n^+ \right)' \right| \right) \left(\left(u_n^+ \right)' \right)^2 dt - \| u_n^+ \|^p_p + \int_0^b f_\pm (t, u_n^+) \ dt \leq \varepsilon_n \text{ for all } n \geq 1. \tag{3.26}
\]

We add (3.25) and (3.26). Using hypothesis \(H(a)(iv) \) and (3.1), we obtain
\[
\int_0^b \left[f(t, u_n^+) \ u_n^+ - pF(t, u_n^+) \right] \ dt \leq M_7 \text{ for some } M_7 > 0, \text{ all } n \geq 1. \tag{3.27}
\]

Using (3.10), we infer that \(\{ u_n^+ \}_{n \geq 1} \subset L^r(T) \) is bounded. By virtue of hypothesis \(H(f)(i) \), we have
\[
|f(t, x) x| \leq a(t) \left| |x| + |x|^r \right| \text{ for a.a. } t \in T, \text{ all } x \in \mathbb{R}. \tag{3.28}
\]

In (3.23), we choose \(h = u_n^+ \in W \) and obtain
\[
C_0 \left\| (u_n^+)' \right\|^p + \| u_n^+ \|^p_p \leq \varepsilon_n + \int_0^b f(t, u_n^+) \ u_n^+ \ dt
\]
\[
\leq C_9 \left(1 + \| u_n^+ \|^r_p \right) \text{ for some } C_9 > 0, \text{ all } n \geq 1
\]
(see (3.26) and (2.3)). Using (3.15), the interpolation inequality and the boundedness of \(\{ u_n^+ \}_{n \geq 1} \subset L^r(T) \), as in the proof of Proposition 3.1 (see (3.16) and (3.17)), we obtain
\[
\| u_n^+ \|^r_p \leq C_{10} \left(1 + \| u_n^+ \|^r_p \right) \text{ for some } C_{10} > 0, \text{ all } n \geq 1,
\]

hence
\[
\{ u_n^+ \}_{n \geq 1} \subset W \text{ is bounded} \tag{3.29}
\]
(since \(tr = r - \tau < p \), see \(H(f)(ii) \)). From (3.24) and (3.29) it follows that \(\{ u_n \}_{n \geq 1} \subset W \) is bounded. So, we may assume that
\[
u_n \rightarrow u \text{ in } W \text{ and } u_n \rightarrow u \text{ in } C(T). \tag{3.30}
\]

In (3.23) we choose \(h = u_n - u \in W \), pass to the limit as \(n \to \infty \) and use (3.30). Then
\[
\lim_{n \to \infty} \langle A(u_n), u_n - u \rangle = 0,
\]
therefore
\[
u_n \rightarrow u \text{ in } W
\]
(see Proposition 2.2). This proves that the functional \(\mathring{\varphi}_+ \) satisfies the \(C \)-condition. \(\square \)
Proposition 3.3. If hypotheses $H(a)$ and $H(f)$ hold, then the functional $\hat{\varphi}_-$ is coercive.

Proof. By virtue of hypotheses $H(f)(i)$ and (iii), given $\varepsilon > 0$ we can find $a_2 \in L^1(T)$ such that

$$F(t,x) \leq \frac{1}{p} (\theta(t) + \varepsilon) |x|^p + a_2(t) \text{ for a.a. } t \in T, \text{ all } x \leq 0. \quad (3.31)$$

Then for all $u \in W$, we have

$$\hat{\varphi}_-(u) = \int_0^b G(u'(t)) \, dt + \frac{1}{p} \|u\|_p^p - \int_0^b \hat{F}_-(t,u(t)) \, dt$$

$$\geq \frac{C_0}{p} \|u'\|^p_p - \frac{1}{p} \int_0^b \theta(t) |u(t)|^p \, dt - \frac{\varepsilon}{p} \|u\|^p - \|a_2\|_1$$

(see (2.2) and (3.31))

$$\geq \frac{\xi_0 - \varepsilon}{p} \|u\|^p - \|a_2\|_1 \text{ with } \xi_0 > 0$$

(see [6]), Lemma 2.1).

Choosing $\varepsilon \in (0, \xi_0)$ in the last inequality, we conclude that $\hat{\varphi}_-$ is coercive. \qed

Now we are ready to produce two constant sign solutions.

Proposition 3.4. If hypotheses $H(a)$ and $H(f)$ hold, then problem (1.1) has at least two constant sign solutions $u_0 \in \text{int } \widehat{\mathcal{C}}_+$ and $v_0 \in -\text{int } \widehat{\mathcal{C}}_+$. Moreover, v_0 is a local minimizer of φ.

Proof. First we show that $u = 0$ is a local minimizer of the functional $\hat{\varphi}_+$. So, let $u \in \widehat{\mathcal{C}}^1(T)$ with $\|u\|_{\widehat{\mathcal{C}}^1(T)} \leq \delta_0$, where $\delta_0 > 0$ is as postulated by hypothesis $H(f)(iv)$. Then

$$\hat{\varphi}_+(u) = \int_0^b G(u'(t)) \, dt + \frac{1}{p} \|u\|_p^p - \int_0^b \hat{F}_+(t,u(t)) \, dt$$

$$\geq \frac{C_0}{p} \|u'\|^p_p \text{ (see (2.2) and } H(f)(iv)),}$$
hence \(u = 0 \) is a local \(\hat{C}^1 (T) \)–minimizer of the functional \(\hat{\varphi}_+ \), therefore \(u = 0 \) is a local \(W \)–minimizer of the functional \(\hat{\varphi}_+ \) (see Proposition 2.3). This implies that we can find \(\rho \in (0, 1) \) small, such that

\[
\hat{\varphi}_+(0) = 0 < \inf \{ \hat{\varphi}_+(u) : \|u\| = \rho \} =: \hat{\eta}_p^+ \tag{3.32}
\]

(see Aizicovici-Papageorgiou-Staicu [2], p. 57). For \(\xi \in (0, \infty) \) we have

\[
\hat{\varphi}_+(\xi) = -\int_0^b F_+(t, \xi) \, dt \quad \text{(see (3.1))},
\]

hence

\[
\hat{\varphi}_+(\xi) \to -\infty \text{ as } \xi \to +\infty \quad \text{(see } H(f) \text{ (ii))}. \tag{3.33}
\]

From Proposition 3.2 we know that \(\hat{\varphi}_+ \) satisfies the \(C \)–condition. This fact together with (3.32) and (3.33) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find \(u_0 \in W \) such that

\[
\hat{\varphi}_+(0) = 0 < \hat{\eta}_p^+ \leq \hat{\varphi}_+(u_0) \tag{3.34}
\]

and

\[
\hat{\varphi}_+'(u_0) = 0. \tag{3.35}
\]

From (3.34) we see that \(u_0 \neq 0 \). From (3.35) we have

\[
A(u_0) + |u_0|^{p-2} u_0 = N_{\hat{f}_+}(u_0). \tag{3.36}
\]

On (3.36) we act with \(-u_0^- \in W\), and use (3.1) and Proposition 3.2 to obtain

\[
C_0 \left\| (u_0^-)' \right\|^p_p + \left\| u_0^- \right\|^p_p \leq 0,
\]

therefore

\[
u_0 \geq 0, \quad u_0 \neq 0.
\]

Hence, (3.36) becomes

\[
A(u_0) = N_f(u_0) \quad \text{(see (3.1))},
\]

and we get

\[
\begin{cases}
-(a(|u_0'(t)|)u_0'(t))' = f(t, u_0(t)) \quad \text{a.e. on } T, \\
u_0(0) = u_0(b), u_0'(0) = u_0'(b) \cdot \tag{3.37}
\end{cases}
\]
Periodic problems superlinear at $+\infty$ and sublinear at $-\infty$.

Then $u_0 \in \hat{C}^1(T)$. Let $\rho = \|u_0\|_\infty$ and $\xi_\rho > 0$ be as postulated by hypothesis $H (f) (iv)$. From (3.37) we have

$$- (a (|u'_0(t)|) u'_0(t))^t + \xi_\rho u_0(t)^{p-1} = f(t, u_0(t)) + \xi_\rho u_0(t)^{p-1} \geq 0 \text{ a.e. on } T,$$

hence

$$(a (|u'_0(t)|) u'_0(t))^t \leq \xi_\rho u_0(t)^{p-1} \text{ a.e. on } T.$$ (3.38)

From (3.38) and the strong maximum principle of Pucci-Serrin ([18], p.111) it follows that $u_0(t) > 0$ for all $t \in (0, b)$.

Then the boundary point theorem of Pucci-Serrin ([18], p.120) implies that $u_0 \in int C_+$. From Proposition 3.3 we know that $\hat{\varphi}_-$ is coercive. Also, using the Sobolev embedding theorem, we see that $\hat{\varphi}_-$ is sequentially lower semicontinuous.

So, by the Weierstrass theorem we can find $v_0 \in W$ such that

$$\hat{\varphi}_-(v_0) = \inf \{ \hat{\varphi}_-(u) : u \in W \}. \quad (3.39)$$

Let $v = -\tilde{\xi}_0 \in -int \hat{C}_+$ be as in hypothesis $H (f) (iv)$. We have

$$\hat{\varphi}_-(v_0) = -\int_0^b F(t, -\tilde{\xi}_0) dt < 0$$

(see (3.1) and hypothesis $H (f) (iv)$), hence

$$\hat{\varphi}_-(v_0) < 0 = \hat{\varphi}_-(0)$$

(see (3.39)), therefore

$$v_0 \neq 0.$$

From (3.39) we have

$$\hat{\varphi}'_-(v_0) = 0.$$

which implies

$$A(v_0) + |v_0|^{p-2} v_0 = N_{\hat{f}_-}(v_0). \quad (3.40)$$

Acting on (3.40) with $v_0^+ \in W$ and using (3.1) and Proposition 3.2, we obtain

$$C_0 \left\| (v_0^+)' \right\|^p + \left\| v_0^+ \right\|^p \leq 0,$$

hence

$$v_0 \leq 0, \ v_0 \neq 0.$$
Then (3.40) becomes
\[A(v_0) = N_f(v_0), \]
and we get
\[
\begin{cases}
-(a(|v'_0(t)|)v'_0(t))' = f(t, v_0(t)) \text{ a.e. on } T, \\
v_0(0) = v_0(b), v'_0(0) = v'_0(b).
\end{cases}
\]
Hence \(v_0 \in \widehat{C}^1(T) \), and as before, using the results of Pucci-Serrin ([18], pp. 111, 120), we obtain \(v_0 \in -\text{int } \widehat{C}_+ \). Note that
\[\varphi |_{-\widehat{C}_+} = \widehat{\varphi} |_{-\widehat{C}_+}. \]
Therefore \(v_0 \in -\text{int } \widehat{C}_+ \) is a local \(\widehat{C}(T) \)-minimizer of \(\varphi \), and from Proposition 2.3 it follows that \(v_0 \in -\text{int } \widehat{C}_+ \) is a local \(W \)-minimizer of \(\varphi \).

Next, using Morse theory, we will produce a third nontrivial solution for problem (1.1). To this end, we start by computing the critical groups of \(\varphi \) at infinity.

Proposition 3.5. If hypotheses \(H(a) \) and \(H(f) \) hold, then \(C_k(\varphi, \infty) = 0 \) for all \(k \geq 0 \).

Proof. Let \(\psi := \varphi |_{\widehat{C}^1(T)} \). The regularity properties of solutions of (1.1) imply that
\[K_\psi = K_\varphi = K. \]
Since \(\widehat{C}^1(T) \hookrightarrow W \) densely, from Palais [15], we have
\[H_k(W, \varphi^\alpha) = H_k(\widehat{C}^1(T), \varphi^\alpha) \text{ for all } \alpha \in \mathbb{R}, \text{ all } k \geq 0. \tag{3.41} \]
Let \(\alpha < \inf \varphi(K) = \inf \psi(K) \). We have
\[C_k(\varphi, \infty) = H_k(W, \varphi^\alpha) = H_k(W, \varphi^\alpha) \text{ for all } k \geq 0, \tag{3.42} \]
\[C_k(\psi, \infty) = H_k(\widehat{C}^1(T), \psi^\alpha) = H_k(\widehat{C}^1(T), \psi^\alpha) \text{ for all } k \geq 0, \tag{3.43} \]
(see Granas-Dugundji [14], p.407). Then from (3.41), (3.42), (3.43), it follows that in order to prove the proposition, it suffices to show that
\[H_k(\widehat{C}^1(T), \psi^\alpha) = 0 \text{ for all } k \geq 0, \alpha < 0 \text{ with } |\alpha| \text{ big.} \]
To this end, we introduce the following sets

$$\partial B^C_1 = \left\{ u \in \hat{C}^1 (T) : \|u\|_{\hat{C}^1(T)} = 1 \right\},$$

$$\partial B^C_{1,+} = \{ u \in \partial B^C_1 : u(t) > 0 \text{ for some } t \in (0,b) \}.$$

Let \(h_+: [0,1] \times \partial B^C_{1,+} \to \partial B^C_{1,+} \) be the homotopy defined by

$$h_+(t,u) = \frac{(1-t)u + t\hat{u}_0}{\| (1-t)u + t\hat{u}_0 \|_{\hat{C}^1(T)}} \text{ for all } (t,u) \in [0,1] \times \partial B^C_{1,+},$$

where \(\hat{u}_0 \in \text{int } \hat{C}_+ \) with \(\| \hat{u}_0 \|_{\hat{C}^1(T)} = 1 \). We have

$$h_+(0,u) = u, \ h_+(1,u) = \hat{u}_0,$$

hence \(\partial B^C_{1,+} \) is contractible in itself. For \(u \in \partial B^C_{1,+} \) and \(\lambda > 0 \) we have

$$\varphi(\lambda u) = \int_0^b G(\lambda u'(t)) \, dt - \int_0^b F(t,\lambda u(t)) \, dt$$

$$\leq C_{11} \left(1 + \lambda^p \left\| u' \right\|^p_p \right) - \int_0^b F(t,\lambda u(t)) \, dt \text{ for some } C_{11} > 0 \text{ (see (2.3))} \quad (3.44)$$

$$= C_{11} \left(1 + \lambda^p \left\| u' \right\|^p_p \right) - \int_0^b F(t,\lambda u^+(t)) \, dt - \int_0^b F(t,-\lambda u^-(t)) \, dt.$$

By virtue of \(H(f)(i),(ii) \), given any \(\xi > 0 \), we can find \(a_3 \in L^1(T) \) such that

$$F(t,x) \geq \xi x^p - a_3(t) \text{ for a.a. } t \in T, \text{ all } x \geq 0. \quad (3.45)$$

On the other hand, hypotheses \(H(f)(i),(iii) \) imply that there exist \(C_{12} > 0 \) and \(a_4 \in L^1(T) \) such that

$$F(t,x) \geq -C_{12} |x|^p - a_4(t) \text{ for a.a. } t \in T, \text{ all } x \leq 0. \quad (3.46)$$

Returning to (3.44) and using (3.45) and (3.46), we have

$$\varphi(\lambda u) \leq \lambda^p C_{11} \left\| u' \right\|^p_p - \lambda^p \xi \left\| u^+ \right\|^p_p + \lambda^p C_{12} \left\| u^- \right\|^p_p + C_{13}$$

for some \(C_{13} > 0 \)

$$\leq \lambda^p \left[C_{11} \left\| u' \right\|^p_p + C_{12} \left\| u^- \right\|^p_p - \xi \left\| u^+ \right\|^p_p \right] + C_{13}. \quad (3.47)$$
Since $\xi > 0$ is arbitrary, we choose $\xi > 0$ big such that

$$C_{11} \| u' \|^p + C_{12} \| u^- \|^p < \xi \| u^+ \|^p.$$

Then from (3.47) it follows that

$$\varphi (\lambda u) \to -\infty \text{ as } \lambda \to +\infty. \quad (3.48)$$

Hypotheses $\mathbf{H}(f) (ii), (iii)$ imply that there exist $\beta_2 \in (0, \beta_0), \ M_8 > 0$ and $\xi^* > 0$ such that

$$pF (t, x) - f (t, x) x \leq -\beta_2 x^\tau \text{ for a.a. } t \in T, \text{ all } x \geq M_8, \quad (3.49)$$

$$pF (t, x) - f (t, x) x \leq \xi^* \text{ for a.a. } t \in T, \text{ all } x \leq 0. \quad (3.50)$$

By (3.49) and (3.50) and hypothesis $\mathbf{H}(f) (i)$, for every $u \in W$, we have

$$\int_0^b [pF (t, u) - f (t, u) u] dt = \int_{\{u \leq 0\}} [pF (t, u) - f (t, u) u] dt + \int_{\{u \geq M_8\}} [pF (t, u) - f (t, u) u] dt + \int_{\{0 < u < M_8\}} [pF (t, u) - f (t, u) u] dt$$

$$\leq C_{14} - \beta_2 \int_{\{u \geq M_8\}} u^\tau dt. \quad (3.51)$$

Let $i : \widehat{C}^1 (T) \to W$ be the embedding map. Hence $i \in \mathcal{L} \left(\widehat{C}^1 (T), W \right)$. We see that

$$\psi = \varphi \circ i.$$

From the chain rule, we have

$$\psi' = i^* \varphi' (u) \text{ for all } u \in W. \quad (3.52)$$
Let \(\langle \cdot, \cdot \rangle_C \) denote the duality brackets for the pair \((\widehat{C}^1 (T)^*, \widehat{C}^1 (T)) \). We have

\[
\frac{d}{d\lambda} \psi (\lambda u) = \langle \psi' (\lambda u), u \rangle_C \\
= \langle i^* \varphi' (\lambda u), u \rangle_C \quad \text{(see (3.52))} \\
= \langle \varphi' (\lambda u), u \rangle_C \\
= \frac{1}{\lambda} \left[\int_0^b a (|\lambda u'|) (\lambda u')^2 \, dt - \int_0^b f (t, \lambda u) \lambda u \, dt \right] \\
\leq \frac{1}{\lambda} \left[\int_0^b pG (\lambda u') \, dt - \int_0^b pF (t, \lambda u) \, dt + C_{14} \right] \\
\quad \text{(see \(\mathbf{H} (a) (iv) \) and (3.51))} \\
= \frac{1}{\lambda} [p \varphi (\lambda u) + C_{14}] \\
\tag{3.53}
\]

From (3.48) and (3.53), we see that for \(\lambda > 0 \) big (such that \(\varphi (\lambda u) < -\frac{C_{14}}{p} \)), we have

\[
\frac{d}{d\lambda} \psi (\lambda u) < 0. \\
\tag{3.54}
\]

From Proposition 3.3, we have

\[
\inf_{-\widehat{C}^1} \psi = \inf_{-\widehat{C}^1} \varphi > -C_{15} \text{ for some } C_{15} > 0.
\]

Let

\[
\alpha < \min \left\{ -C_{15}, -\frac{C_{14}}{p}, \inf_{\overline{B}^C_1} \psi \right\}
\]

where

\[
\overline{B}^C_1 = \left\{ u \in \widehat{C}^1 (T) : \|u\|_{\widehat{C}^1 (T)} \leq 1 \right\}.
\]

From (3.54) we see that we can find a unique \(\gamma (u) \geq 1 \) such that

\[
\psi (\lambda u) > \alpha \text{ if } \lambda < \gamma (u), \\
\psi (\lambda u) = \alpha \text{ if } \lambda = \gamma (u), \\
\psi (\lambda u) < \alpha \text{ if } \lambda > \gamma (u)
\]

and

\[
\psi^\alpha = \{ \lambda u : u \in \partial B^C_{1,+}, \lambda \geq \gamma (u) \}. \\
\tag{3.55}
\]
By virtue of the implicit function theorem, we have \(\gamma \in C(\partial B^C_{1,+}, [1, \infty)) \). Let
\[
V_+ = \{ \lambda u : u \in \partial B^C_{1,+}, \lambda \geq 1 \}.
\]
It is easily seen that \(\partial B^C_{1,+} \) is a retract of \(V_+ \) and \(V_+ \) is deformable onto \(\partial B^C_{1,+} \) in \(\hat{C}^1(T) \). Then invoking Dugundji [10] (Theorem 6.5, p.325), we infer that \(\partial B^C_{1,+} \) is a deformation retract of \(V_+ \). Therefore
\[
V_+ \text{ and } \partial B^C_{1,+} \text{ are homotopy equivalent.} \tag{3.56}
\]
We introduce the homotopy \(\hat{h}_+: [0,1] \times V_+ \rightarrow V_+ \) by
\[
\hat{h}_+(t, \lambda u) = \begin{cases}
(1-t)\lambda u + t\gamma(u)u & \text{if } \lambda \in [1, \gamma(u)], \\
\lambda u & \text{if } \lambda \geq \gamma(u).
\end{cases}
\]
Then (cf. (3.55))
\[
\hat{h}_+(0,.) = Id, \quad \hat{h}_+(1, \lambda u) \in \psi^\alpha \text{ for all } \lambda u \in V_+,
\]
\[
\hat{h}_+(t, .) |_{\psi^\alpha} = Id |_{\psi^\alpha}.
\]
This means that \(\psi^\alpha \) is a strong deformation retract of \(V_+ \). Therefore
\[
V_+ \text{ and } \psi^\alpha \text{ are homotopy equivalent.} \tag{3.57}
\]
From (3.56) and (3.57) it follows that
\[
\psi^\alpha \text{ and } \partial B^C_{1,+} \text{ are homotopy equivalent},
\]
hence
\[
H_k\left(\hat{C}^1(T), \psi^\alpha\right) = H_k\left(\hat{C}^1(T), \partial B^C_{1,+}\right) \text{ for all } k \geq 0 \tag{3.58}
\]
(see Granas-Dugundji [14], p. 387). Recall that \(\partial B^C_{1,+} \) is contractible in itself. So,
\[
H_k\left(\hat{C}^1(T), \partial B^C_{1,+}\right) = 0 \text{ for all } k \geq 0 \tag{3.59}
\]
(see Granas-Dugundji [14], p. 389). From (3.58) and (3.59) it follows that
\[
H_k\left(\hat{C}^1(T), \psi^\alpha\right) = 0 \text{ for all } k \geq 0,
\]
therefore
\[
C_k(\varphi, \infty) = 0 \text{ for all } k \geq 0
\]
(see the first part of the proof).\[\square\]
Also, we compute the critical groups of \(\hat{\varphi}_+ \) at infinity.

Proposition 3.6. If hypotheses \(\mathbf{H}(a) \) and \(\mathbf{H}(f) \) hold, then \(C_k(\hat{\varphi}_+, \infty) = 0 \) for all \(k \geq 0 \).

Proof. By virtue of hypotheses \(\mathbf{H}(f) (i), (ii) \), given any \(\xi > 0 \), we can find \(a_5 \in L^1(T) \) such that

\[
F(t,x) \geq \xi x^p - a_5(t) \quad \text{for a.a. } t \in T, \text{ all } x \geq 0.
\]

We introduce the set

\[
E_+ = \{ u \in W : \|u\| = 1, u^+ \neq 0 \}.
\]

For \(u \in E_+ \) and \(\lambda > 0 \), we have

\[
\hat{\varphi}_+(\lambda u) = \int_0^b G(\lambda u'(t)) \, dt + \frac{\lambda^p}{p} \|u\|_p^p - \int_0^b \hat{F}_+(t,u) \, dt
\]

\[
\leq C_{16} \left(1 + \lambda^p \|u'\|_p^p \right) + \frac{\lambda^p}{p} \|u\|_p^p - \xi \lambda^p \|u^+\|_p^p + C_{17}
\]

for some \(C_{16}, C_{17} > 0 \)

\[
= \lambda^p \left[\|u'\|_p^p + \frac{1}{p} \|u\|_p^p - \xi \|u^+\|_p^p \right] + C_{18},
\]

with \(C_{18} = C_{16} + C_{17} > 0 \).

Since \(\xi > 0 \) is arbitrary, we choose \(\xi > 0 \) big such that

\[
\|u'\|_p^p + \frac{1}{p} \|u\|_p^p < \xi \|u^+\|_p^p.
\]

So, from (3.60) it is clear that

\[
\hat{\varphi}_+(\lambda u) \to -\infty \text{ as } \lambda \to +\infty.
\]

Similarly, as in the proof of Proposition 3.5 (see (3.51)), for all \(u \in W \) we have

\[
\int_0^b \left[p\hat{F}_+(t,u) - f(t,u) \right] \, dt = \int_\{u>0\} \left[pF(t,u) - f(t,u) \right] \, dt
\]

\[
= \int_{\{0<u<M_8\}} \left[pF(t,u) - f(t,u) \right] \, dt
\]

\[
+ \int_{\{u\geq M_8\}} \left[pF(t,u) - f(t,u) \right] \, dt, \text{ for some } M_8 > 0 \text{ big (see (3.49))}
\]

\[
\leq C_{19} - \beta_2 \int_{\{u\geq M_8\}} u^\tau \, dt, \text{ for some } C_{19} > 0
\]
Using (3.62), we have
\[
\frac{d}{d\lambda} \hat{\varphi}_+ (\lambda u) = \langle \hat{\varphi}'_+ (\lambda u), u \rangle \\
= \int_0^b \left(a (|\lambda u'|^p) \lambda (u')^2 dt + \frac{\lambda^{p-1}}{p} \|u\|^p_p - \int_0^b \hat{f}_+ (t, \lambda u) u dt \right) \\
= \frac{1}{\lambda} \left[\int_0^b a (|\lambda u'|) (\lambda u')^2 dt + \lambda^p \|u\|^p_p - \int_0^b \hat{f}_+ (t, \lambda u) \lambda u dt \right] \\
\leq \frac{1}{\lambda} \left[\int_0^b pG (\lambda u') dt + \lambda^p \|u\|^p_p - \int_0^b p\hat{F}_+ (t, \lambda u) \lambda u dt + C_{19} \right] \\
= \frac{1}{\lambda} \left[p\hat{\varphi}_+ (\lambda u) + C_{19} \right].
\]
(see H(a) (iv) and (3.62))
So, for \(\lambda > 0 \) big (such that \(\hat{\varphi}_+ (\lambda u) < -\frac{C_{19}}{p} \)), we have
\[
\frac{d}{d\lambda} \hat{\varphi}_+ (\lambda u) < 0.
\]
Let \(d < -\frac{C_{19}}{p} \). We can find a unique \(\gamma_+ (u) > 0, \gamma_+ \in C (E_+) \) (by the implicit function theorem) such that
\[
\hat{\varphi}_+ (\gamma_+ (u) u) = d \text{ for all } u \in E_+.
\]
Let \(D_+ := \{u \in W : u^+ \neq 0\} \) and define
\[
\hat{\gamma}_+ (u) = \frac{1}{\|u\|} \gamma_+ \left(\frac{u}{\|u\|} \right) \text{ for all } u \in D_+.
\]
We have \(\hat{\gamma}_+ \in C (D_+) \), and from (3.63) it follows
\[
\hat{\varphi}_+ (\hat{\gamma}_+ (u) u) = d \text{ for all } u \in D_+.
\]
Moreover, if \(\hat{\varphi}_+ (u) = d \), then \(\hat{\gamma}_+ (u) = 1 \). We set
\[
\widetilde{\gamma}_+ (u) = \begin{cases}
1 & \text{if } \hat{\varphi}_+ (u) \leq d \\
\hat{\gamma}_+ (u) & \text{if } \hat{\varphi}_+ (u) > d.
\end{cases}
\]
(3.65)
for all \(u \in D_+ \). We see that \(\widetilde{\gamma}_+ \in C (D_+) \).
We introduce the homotopy \(\tilde{h}_+ : [0, 1] \times D_+ \to D_+ \) by
\[
\tilde{h}_+ (t, u) = (1 - t) u + t \tilde{\gamma}_+ (u) u \quad \text{for all} \quad (t, u) \in [0, 1] \times D_+.
\]
We have
\[
\tilde{h}_+ (0, u) = u, \quad \tilde{h}_+ (1, u) \in \hat{\varphi}^d_+ \quad \text{and} \quad \tilde{h}_+ (t, .) |_{\hat{\varphi}^d_+} = Id |_{\hat{\varphi}^d_+}
\]
for all \((t, u) \in [0, 1] \times D_+\).

This shows that \(\hat{\varphi}^d_+ \) is a strong deformation retract of \(D_+ \). Hence
\[
D_+ \quad \text{and} \quad \hat{\varphi}^d_+ \quad \text{are homotopy equivalent},
\]
therefore
\[
H_k (W, D_+) = H_k \left(W, \hat{\varphi}^d_+ \right) \quad \text{for all} \quad k \geq 0. \tag{3.66}
\]
Without any loss of generality we assume that \(K_{\hat{\varphi}_+} \) is finite. (Otherwise we already have a sequence of distinct positive solutions of (1.1).) We choose
\[
d < \min \left\{ \inf \hat{\varphi}_+ \left(K_{\hat{\varphi}_+} \right), -\frac{C_{19}}{p} \right\}.
\]
Then we have
\[
H_k \left(W, \hat{\varphi}^d_+ \right) = C_k \left(\hat{\varphi}_+, \infty \right) \quad \text{for all} \quad k \geq 0. \tag{3.67}
\]
Consider the homotopy \(h^* : [0, 1] \times D_+ \to D_+ \) defined by
\[
h^* (t, u) = \frac{(1 - t) u + t \hat{u}_0}{\| (1 - t) u + t \hat{u}_0 \|}
\]
where \(\hat{u}_0 \in \text{int } \hat{C}_+ \). Then \(h^* (1, u) = \frac{\hat{u}_0}{\| \hat{u}_0 \|} \), which proves that \(D_+ \) is contractible in itself. Therefore
\[
H_k (W, D_+) = 0 \quad \text{for all} \quad k \geq 0 \tag{3.68}
\]
(see Granas-Dugundji [14], p.389). From (3.66), (3.67) and (3.68) we conclude that
\[
C_k \left(\hat{\varphi}_+, \infty \right) = 0 \quad \text{for all} \quad k \geq 0.
\]

Now we are ready to produce a third nontrivial solution and have the complete multiplicity theorem (three solution theorem) for problem (1.1).

Theorem 3.7. If hypotheses \(\mathbf{H} (a) \) and \(\mathbf{H} (f) \) hold, then problem (1.1) has at least three nontrivial solutions \(u_0 \in \text{int } \hat{C}_+, \, v_0 \in -\text{int } \hat{C}_+ \) and \(y_0 \in \hat{C}^1 (T) \).
Proof. From Proposition 3.4 we already have two constant sign solutions \(u_0 \in \text{int} \hat{C}_+\) and \(v_0 \in -\text{int} \hat{C}_+\). We may assume that \(K_{\hat{\varphi}_+} = \{0, u_0\}\), or otherwise we already have a third solution of (1.1) which in fact is positive.

Claim: \(C_k(\hat{\varphi}_+, u_0) = \delta_{k,1}\mathbb{Z}\) for all \(k \geq 0\). Here and in what follows \(\delta_{k,j} (k, j \in \mathbb{Z}_+)\) denotes the Kronecker delta. Let

\[d < 0 = \hat{\varphi}_+(0) < \eta < \hat{n}_p^+ \leq \hat{\varphi}_+(u_0) \]

(see (3.32) and (3.34)). We consider the following triple of sets

\[\hat{\varphi}_+^d \subseteq \hat{\varphi}_+^\eta \subseteq W. \]

For this triple, we consider the corresponding long exact sequence of homology groups

\[
\ldots \to H_k \left(W, \hat{\varphi}_+^d \right) \xrightarrow{i_*} H_k \left(W, \hat{\varphi}_+^\eta \right) \xrightarrow{\partial_*} H_{k-1} \left(\hat{\varphi}_+^\eta, \hat{\varphi}_+^d \right) \to \ldots, \tag{3.69}
\]

where \(i_*\) is the group homomorphism induced by the inclusion \((W, \hat{\varphi}_+^d) \hookrightarrow (W, \hat{\varphi}_+^\eta) \) and \(\partial_*\) is the boundary homomorphism. We have

\[
H_k \left(W, \hat{\varphi}_+^d \right) = C_k \left(\hat{\varphi}_+, \infty \right) \text{ for all } k \geq 0 \text{ (see Proposition 3.6)}, \tag{3.70}
\]

\[
H_k \left(W, \hat{\varphi}_+^\eta \right) = C_k \left(\hat{\varphi}_+, u_0 \right) \text{ for all } k \geq 0 \text{ (recall that } K_{\hat{\varphi}_+} = \{0, u_0\}\text{)}, \tag{3.71}
\]

\[
H_{k-1} \left(\hat{\varphi}_+^\eta, \hat{\varphi}_+^d \right) = C_{k-1} \left(\hat{\varphi}_+, 0 \right) = \delta_{k-1,0}\mathbb{Z} = \delta_{k,1}\mathbb{Z} \text{ for all } k \geq 0 \tag{3.72}
\]

(see the proof of Proposition 3.4)).

From (3.70), (3.71), (3.72) and the exactness of (3.69), we see that in (3.69) only the tail of a long sequence (i.e., \(k = 1\)), is nontrivial. So, we focus on the tail and use the rank theorem to obtain

\[
\text{rank } C_1 \left(\hat{\varphi}_+, u_0 \right) = \text{rank } H_1 \left(W, \hat{\varphi}_+^\eta \right)
= \text{rank } \ker \partial_* + \text{rank } \text{Im } \partial_*
= \text{rank } \text{Im } i_* + \text{rank } \text{Im } \partial_* \text{ (by the exactness of (3.69))}
\leq 0 + 1 \text{ (see (3.70), (3.72))}. \tag{3.73}
\]

On the other hand, from the proof of Proposition 3.4, we know that \(u_0 \in \text{int} \hat{C}_+\) is a critical point of \(\hat{\varphi}_+\) of mountain pass type. Hence

\[
\text{rank } C_1 \left(\hat{\varphi}_+, u_0 \right) \geq 1. \tag{3.74}
\]
Periodic problems superlinear at $+\infty$ and sublinear at $-\infty$

From (3.73) and (3.74), it follows that

$$\text{rank } C_1(\hat{\varphi}_+, u_0) = 1,$$

hence

$$C_k(\hat{\varphi}_+, u_0) = \delta_{k,1}\mathbb{Z} \text{ for all } k \geq 0,$$

(3.75)
as claimed.

Since $\varphi|_{\hat{C}+} = \hat{\varphi}_+|_{\hat{C}+}$ and $u_0 \in \text{int } \hat{C}_+$, we have

$$C_k\left(\varphi|_{\hat{C}^1(T)}, u_0\right) = C_k\left(\hat{\varphi}_+|_{\hat{C}^1(T)}, u_0\right) \text{ for all } k \geq 0,$$

hence

$$C_k(\varphi, u_0) = C_k(\hat{\varphi}_+, u_0) \text{ for all } k \geq 0 \text{ (see Palais [15])},$$

therefore

$$C_k(\varphi, u_0) = \delta_{k,1}\mathbb{Z} \text{ for all } k \geq 0 \text{ (see (3.75))}.$$

(3.76)
Recall that v_0 and 0 are local minimizers of φ (see Proposition 3.4 and its proof). Therefore, we have

$$C_k(\varphi, v_0) = C_k(\varphi, 0) = \delta_{k,0}\mathbb{Z} \text{ for all } k \geq 0.$$

(3.77)
Finally, from Proposition 3.5, we have

$$C_k(\varphi, \infty) = 0 \text{ for all } k \geq 0.$$

(3.78)
Suppose that $K_\varphi = \{0, v_0, u_0\}$. From (3.76), (3.77), (3.78) and the Morse relation with $t = -1$ (see (2.1)), we infer that

$$2(-1)^0 + (-1)^1 = 0,$$

which is a contradiction.

So, there exists $y_0 \in K_\varphi, y_0 \notin \{0, v_0, u_0\}$.

Therefore y_0 is the third nontrivial solution of (1.1) and $y_0 \in \hat{C}^1(T)$.

\[\Box\]

Acknowledgement. The third author gratefully acknowledges the partial support by FEDER funds through COMPETE - Operational Programme Factors of Competitiveness and by Portuguese funds through the Center for Research and Development in Mathematics and Applications and the Portuguese Foundation for Science and Technology (FCT), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690
References

Periodic problems superlinear at $+\infty$ and sublinear at $-\infty$

S. Aizicovici
Department of Mathematics,
Ohio University,
Athens, OH 45701,
USA
E-mail: aizicovs@ohio.edu

N. S. Papageorgiou
Department of Mathematics,
National Technical University,
Zografou Campus,
Athens 15780,
Greece
E-mail: npapg@math.ntua.gr
V. Staicu
CIDMA and Department of Mathematics,
University of Aveiro,
3810-193 Aveiro,
Portugal
E-mail: vasile@ua.pt