NOTES ON TOPOLOGICAL APPLICATIONS
OF REGULAR OR \mathcal{C}-SMOOTH MEASURES TO WALLMAN TYPE SPACES

Carmen Vlad

1. INTRODUCTION. Let X be an arbitrary set, and \mathcal{L} a lattice of subsets of X. It is assumed throughout the paper that $\emptyset, X \in \mathcal{L}$.

We adhere to the customary lattice – topological definitions which can be found for example in [1],[2],[4],[7] and [10]. Here, we just note some of the measure theoretic equivalents. For this purpose we introduce the following notations: $\mathcal{A}(\mathcal{L})$ denotes the algebra generated by \mathcal{L}, and $I(\mathcal{L})$ the set of non-trivial zero-one valued finitely additive measures on $\mathcal{A}(\mathcal{L})$. $I_{\mathcal{L}}(\mathcal{L})$ the set of \mathcal{L}-regular measures of $I(\mathcal{L})$, where $\mu \in I(\mathcal{L})$ is \mathcal{L}-regular if for any $A \in \mathcal{A}(\mathcal{L})$

$$\mu(A) = \sup \{ \mu(L)/L \subseteq A \in \mathcal{L} \},$$

$I_{\mathcal{L}}(\mathcal{L})$ the set of \mathcal{L}-smooth measures of $I(\mathcal{L})$ on \mathcal{L}, where $\mu \in I(\mathcal{L})$ is \mathcal{L}-smooth on \mathcal{L} if for all sequences $\{L_n\}$ of sets of \mathcal{L} with $L_n \uparrow \emptyset$, $\mu(L_n) \to 0$. $I_{\mathcal{L}}(\mathcal{L})$ the set of \mathcal{L}-regular measures of $I(\mathcal{L})$. $\mathcal{K}(\mathcal{L}) = \{ \mathcal{T}, \text{defined on } \mathcal{L}, \text{non-trivial,} \text{monotone, and } \mathcal{T}(\mathcal{A} \cap \mathcal{B}) = \mathcal{T}(\mathcal{A}) \mathcal{T}(\mathcal{B}), \mathcal{A}, \mathcal{B} \in \mathcal{L} \}$ the set of all premeasures on \mathcal{L}. $\mathcal{K}_{\mathcal{L}}(\mathcal{L})$ is the set of all \mathcal{L}-smooth on \mathcal{L}.

Note that there exists a one-to-one correspondence between:

\mathcal{L}-filters \mathcal{F} and elements of $\mathcal{K}(\mathcal{L})$ given by $\mathcal{T}(\mathcal{L}) = 1$ iff $\mathcal{L} \in \mathcal{F}$.

All elements of $I(\mathcal{L})$ and all prime \mathcal{L}-filters, given by:

for any $\mu \in I(\mathcal{L})$ associate the prime \mathcal{L}-filter given by:

$$\mathcal{F} = \{ A \subseteq \mathcal{L} : \mu(A) = 1 \}.$$

All elements of $I_{\mathcal{L}}(\mathcal{L})$ and all \mathcal{L}-ultrafilters, given by the following rule: with each \mathcal{L}-ultrafilter \mathcal{F} we associate the zero-one valued measure defined on $\mathcal{A}(\mathcal{L})$ by:

$$\mu(E) = \begin{cases} 1 \text{ if there exists } A \in \mathcal{F}, \forall E \subseteq A \in \mathcal{E} \\ 0 \text{ if there exists } A \in \mathcal{F}, \forall E \subseteq A \notin \mathcal{E} \end{cases}.$$
The support of \(\mu \in I(\mathcal{L}) \) is \(S(\mu) = \bigcap \{ L \in \mathcal{L} : \mu(L) = 1 \} \).

With this notation, we now note: \(\mathcal{L} \) is compact iff \(S(\mu) \neq \emptyset \) for every \(\mu \in I(\mathcal{L}) \). \(\mathcal{L} \) is countably compact iff \(I_R(\mathcal{L}) \subseteq \mathcal{G}_R(\mathcal{L}) \). \(\mathcal{L} \) is normal iff for each \(\mu \in I(\mathcal{L}) \), there exists a unique \(\nu \in I_R(\mathcal{L}) \) such that \(\mu \leq \nu \) (\(\mathcal{L} \)) i.e. \(\mu(L) \leq \nu(L) \) for all \(L \in \mathcal{L} \). \(\mathcal{L} \) is regular iff whenever \(\mu_1, \mu_2 \in I(\mathcal{L}) \) and \(\mu_1 \leq \mu_2 \), then \(S(\mu_1) = S(\mu_2) \). \(\mathcal{L} \) is replete iff for any \(\mu \in I_R(\mathcal{L}) \), \(S(\mu) \neq \emptyset \). \(\mathcal{L} \) is prime-complete iff for any \(\mu \in I_R(\mathcal{L}) \), \(S(\mu) \neq \emptyset \). \(\mathcal{L} \) is Lindelöf iff for any \(\mathcal{T} \in \mathcal{T}_0(\mathcal{L}) \), \(S(\mathcal{T}) \neq \emptyset \).

2. THE SPACES \(I_R(\mathcal{L}) \) AND THE LATTICES \(\mathcal{W}_0(\mathcal{L}) \), \(\mathcal{V}_0(\mathcal{L}) \)

We consider in this section the important space \(I_R(\mathcal{L}) \); for \(A \in \mathcal{A}(\mathcal{L}) \) define \(\mathcal{W}_0(A) = \{ \mu \in I_R(\mathcal{L}) : \mu(A) = 1 \} \). Then, assuming \(\mathcal{L} \) is disjunctive, \(\mathcal{W}_0(\mathcal{L}) = \{ \mathcal{W}_0(L) / L \in \mathcal{L} \} \) is a lattice in \(I_R(\mathcal{L}) \) isomorphic to \(\mathcal{L} \), under the map \(L \to \mathcal{W}_0(L) \), \(L \in \mathcal{L} \), and \(\mathcal{A}(\mathcal{W}_0(\mathcal{L})) = \mathcal{W}_0(\mathcal{A}(\mathcal{L})) \). Also the map \(\mu \to \mu' \), where \(\mu' = \mu'(A) \), \(A \in \mathcal{A}(\mathcal{L}) \) is a bijection between \(I_R(\mathcal{L}) \) and \(I_R(\mathcal{W}_0(\mathcal{L})) \). It is well known that \(\mathcal{W}_0(\mathcal{L}) \) is replete and is a basis for the closed sets \(\mathcal{V}_0(\mathcal{L}) \), all arbitrary intersections of sets of \(\mathcal{W}_0(\mathcal{L}) \). It is this topological space \(I_R(\mathcal{L}), \mathcal{V}_0(\mathcal{L}), \) and lattice \(\mathcal{W}_0(\mathcal{L}) \) which we will consider here and subsequent sections. Analogously, we also consider \(I_0(\mathcal{L}) \) and \(\mathcal{V}_0(\mathcal{L}) \); here we do not need the assumption of disjunctiveness on \(\mathcal{L} \), and \(\mathcal{V}_0(\mathcal{L}) = \{ \mathcal{V}_0(L) / L \in \mathcal{L} \} \), where \(\mathcal{V}_0(A) = \{ \mu \in I_0(\mathcal{L}) : \mu(A) = 1 \} \), \(A \in \mathcal{A}(\mathcal{L}) \). \(\mathcal{V}_0(\mathcal{L}) \) is prime complete, and is a base for the closed sets \(\mathcal{V}_0(\mathcal{L}) \) of \(I_0(\mathcal{L}) \).

Theorem 2.1 a). Consider \(I_R(\mathcal{L}) \) and \(\mathcal{W}_0(\mathcal{L}) \) with \(\mathcal{L} \) disjunctive. \(\mathcal{W}_0(\mathcal{L}) \) is regular iff for all \(\mu_1, \mu_2 \in I(\mathcal{L}) \) and \(\forall \mathcal{G}_R(\mathcal{L}) \), if \(\mu_1 \leq \mu_2 \) and \(\mu_1 \leq \nu \) then \(\mu_2 \leq \nu \).

b). The topological space \(I_R(\mathcal{L}), \mathcal{V}_0(\mathcal{L}) \) with \(\mathcal{L} \) disjunctive is considered. Then the space is \(I \) iff for \(\mu \in I(\mathcal{L}) \) and \(\mu \leq \nu \), \(\mu \leq \nu \) of \(I_R(\mathcal{L}) \) it follows that \(\nu = \nu' \).
c). Consider $I_G(L)$ and $\mathcal{V}_G(L)$. $\mathcal{V}_G(L)$ is regular iff for all $\mu_1, \mu_2 \in I(L)$ and $\nu \in \mathcal{V}_G(L)$ if $\mu_1 \leq \mu_2(L)$ and $\mu_1 \leq \nu(L)$ then $\mu_2 \leq \nu(L)$.

d). Consider the topological space $I_G(L)$, $\mathcal{V}_G(L)$. This space is T_2 iff for $\mu \in I(L)$ with $\mu \leq \nu_1(L)$ and $\mu \leq \nu_2(L)$ where $\nu_1, \nu_2 \in I_G(L)$, it follows $\nu_1 = \nu_2$.

Proof. The proofs for a) and c) and for b) and d) are similar. We just prove a) and b).

a). Let $\mu_1, \mu_2 \in I(L)$ such that $\mu_1 \leq \mu_2(L)$. Then there exist $\mu_1', \mu_2' \in I(\mathcal{V}_G(L))$ and $\mu_1'(\mathcal{V}_G(L)) = \mu_1(L)$, $\mu_2'(\mathcal{V}_G(L)) = \mu_2(L)$ for all $L \in I(L)$. $\mu_1(L) \leq \mu_2(L) \Rightarrow \mu_1' \leq \mu_2'$ on $\mathcal{V}_G(L)$.

Suppose $\mathcal{V}_G(L)$ is regular. Then $S(\mu_1') = S(\mu_2')$ where

$$S(\mu_1') \cap \{ \mathcal{W}_G(L) \in \mathcal{V}_G(L) : \mu_1'(\mathcal{W}_G(L)) = 1, L \in I(L) \}$$

Let now $\nu \in \mathcal{W}_G(L)$ with $\mu_1 \leq \nu$. We have $\nu \in S(\mathcal{V}_G(L))$ and $\mu_1' \leq \nu'$ on $\mathcal{V}_G(L)$, therefore $S(\nu') \subseteq S(\mu_1') = S(\mu_2')$; hence $\mu_2' \leq \nu'$ on $\mathcal{V}_G(L)$ i.e. $\mu_2 \leq \nu$ on L.

Conversely, let $\mu_1, \mu_2 \in I(L)$ and $\nu \in \mathcal{W}_G(L)$ such that if $\mu_1 \leq \mu_2(L)$ and $\mu_1 \leq \nu(L)$ then $\mu_2 \leq \nu(L)$. Let now $\lambda_1, \lambda_2 \in I(\mathcal{V}_G(L))$ and assume $\lambda_1 \leq \lambda_2$ on $\mathcal{V}_G(L)$. Then $\lambda_1 \leq \mu_1'$ and $\lambda_2 = \mu_2'$ where $\mu_1', \mu_2' \in I(L)$ and $\mu_1' \leq \mu_2'(\mathcal{V}_G(L))$ i.e. $\mu_1 \leq \mu_2(\mathcal{V}_G(L))$.

Now $S(\mu_2') \subseteq S(\mu_1')$. If $\lambda \in S(\mu_1')$, then clearly $\lambda \in S(\mu_2')$ and $\mu_1 \leq \lambda(L)$. Hence by the assumption $\mu_2 \leq \lambda(L)$ which implies $\lambda \in S(\mu_2')$.

b) Suppose $\mathcal{V}_G(L)$, $\mathcal{W}_G(L)$ is T_2, which implies that $\mathcal{V}_G(L)$ is T_2, and let μ', ν_1, ν_2 as above. Then $\mu' \leq \nu'(L)$ on $\mathcal{V}_G(L)$ where $\mu' \in I(\mathcal{V}_G(L))$ and $\nu' \in \mathcal{W}_G(L)$, which implies $\nu \leq \nu'(\mathcal{V}_G(L))$. Also $\mu' \leq \nu'$ on $\mathcal{V}_G(L)$ where $\nu' \in \mathcal{W}_G(L)$ where $\nu' \leq \nu'(\mathcal{V}_G(L))$, which implies $\nu \leq \nu'(\mathcal{V}_G(L))$. Recall that $\mathcal{V}_G(L)$ is T_2 iff for each $\mu \in I(L)$, $S(\mu') = \emptyset$ or a singleton, hence since $\mathcal{V}_G(L)$ is T_2 it follows $\nu_1 = \nu_2$.

Conversely, assume that for $\mu \in I(L)$ and $\nu_1, \nu_2 \in \mathcal{V}_G(L)$, if $\mu \leq \nu_1(L)$ and $\mu \leq \nu_2(L)$ then $\nu_1 = \nu_2$. Suppose $S(\mu') \neq \emptyset$, where $\mu \in I(L)$, $\lambda \in I(\mathcal{W}_G(L))$ and $\lambda \neq \mu'$. If $\nu_1, \nu_2 \in S(\mu')$ then $\mu \leq \nu_1(L)$ and $\mu \leq \nu_2(L)$ i.e. $\nu_1 = \nu_2$. Therefore $\mathcal{V}_G(L)$ is T_2 and thus $\mathcal{V}_G(L)$ is T_2.

Theorem 2.2 Consider $I^+_G(L)$ and $U^+_G(L)$. $U^+_G(L)$ is regular if

iff $I^+_G(L) = I^+_R(L)$.

Proof. Suppose $I^+_G(L) = I^+_R(L)$. Then $U^+_G(L) = W^+_G(L)$. Now let

$\mu_1, \mu_2 \in I^+_G(L)$, $\nu \in I^+_G(L)$ and $\mu_1 \preceq \mu_2 (L)$, $\mu_1 \preceq \nu (L)$. Then,

since $I^+_G(L) = I^+_R(L)$, $\mu_1 \in I^+_R(L)$ so $\mu_1 = \mu_2$ and $\mu_1 \preceq \nu$.

Conversely, suppose $U^+_G(L)$ is regular and let $\mu \in I^+_G(L)$; there

exists $\nu \in I^+_R(L)$ such that $\mu \preceq \nu (L)$ i.e. $\mu' \preceq \nu' (W^+_G(L))$, where

$\mu', \nu' \in I^+_G(V^+_G(L))$. But $S(\mu') = S(\nu')$ since $V^+_G(L)$ is regular. Hence

$\mu \in S(\nu')$ i.e. $\nu \preceq \mu (L)$. It follows $\mu = \nu$ and then $\mu \in I^+_R(L)$.

3. ON NORMAL, SLIGHTLY NORMAL, MILDLY NORMAL AND LINDELÖF LATTICES

In this section we wish to consider normality and related questions as well as Lindelöf properties concerning the lattices $W^+_G(L)$ in $I^+_R(L)$.

Definition 3.1

a) L is slightly normal if for all $\mu \in I^+_G(L)$, there exists a unique

$\nu \in I^+_R(L)$ such that $\mu \preceq \nu (L)$.

b) L is mildly normal if for all $\mu \in I^+_G(L)$, there exists a unique

$\nu \in I^+_R(L)$ such that $\mu \preceq \nu (L)$.

c) L is almost countably compact if $\mu \in I^+_R(L')$ implies $\mu \in I^+_G(L')$.

Theorem 3.1 Suppose L is disjunctive. Then

a) Consider $I^+_R(L)$ and $W^+_G(L)$ and suppose L is Lindelöf and satisfies the condition: for all $\mu_1, \mu_2 \in I^+_G(L)$ and $\nu \in I^+_R(L)$, if

$\mu_1 \preceq \mu_2 (L)$ and $\mu_1 \preceq \nu (L)$, then $\mu_2 \preceq \nu (L)$. Then $W^+_G(L)$ is

slightly and mildly normal.

b) If L is complement generated then $W^+_G(L)$ is slightly normal.

c) If L is almost countably compact and mildly normal then

$W^+_G(L)$ is normal.

Proof. a) L disjunctive and Lindelöf implies $W^+_G(L)$ Lindelöf

Also, by Theorem 2.1 it follows that $W^+_G(L)$ is regular. Then

$W^+_G(L)$ is slightly and mildly normal (see [4]).

b) L complement generated implies $L = \bigcap L_n$, L and $L_n \in L$, all n.

$W^+_G(L) = W^+_G(L_n) \cap \cap W^+_G(L_n) = W^+_G(L_n)$'. Hence $W^+_G(L)$ complement

generated which implies $W^+_G(L)$ slightly normal (see [4]).
c) By the assumption, for any $\mu \in I_{R}(L')$, it follows $\mu \in I_{G}(L)$ and then there exists a unique $\nu \in I_{R}(L)$ such that $\mu \leq \nu$ (L). Let $\mu \in I_{G}(L)$ such that $\mu \leq \lambda (L)$ with $\lambda \in I_{R}(L')$. Also $\lambda \in I_{G}(L)$ and $\lambda \leq \mu \leq \nu$, on L with $\nu \in I_{R}(L)$, unique. Therefore if $\mu \leq \nu_1 (L)$ with $\nu_1 \in I_{R}(L)$ then $\lambda \leq \mu \leq \nu_1 (L)$, and so $\nu_1 = \nu_2$. Hence L is normal and also $U_{G}(L)$ is normal.

Remark. Consider $I_{G}(L)$ and $U_{G}(L)$ with L Lindelöf. If for all $\mu_1, \mu_2 \in I_{G}(L)$ and $\nu \in I_{G}(L)$ such that if $\mu_1 \leq \nu_2 (L)$ and $\mu_1 \leq \nu (L)$ it follows that $\mu_2 \leq \nu_2 (L)$, then $U_{G}(L)$ is slightly and mildly normal.

Proof. Similar to a) of Theorem 3.1.

We next consider the following condition:

1. For any $T \in \mathcal{F}_{G}(L)$, there exists $\nu \in I_{G}(L)$ such that $T \leq \nu (L)$.

Theorem 3.2.

1. If condition (1) is satisfied and if L is prime complete then L is Lindelöf.

2. If L is Lindelöf then condition (1) holds.

3. L satisfies condition (1) iff $I_{G}(L)$, $\mathcal{F}_{G}(L)$ is Lindelöf.

Proof. a) Let $T \in \mathcal{F}_{G}(L)$ be an L-filter with the countable intersection property. By condition (1) there exists $\nu \in I_{G}(L)$ and $T \leq \nu (L)$ prime complete implies $S(T) \neq \emptyset$ and then $S(T) \neq \emptyset$.

b) Let $T \in \mathcal{F}_{G}(L)$. Since L is Lindelöf, $S(T) \neq \emptyset$ and therefore there exists $x \in X$ such that $x \in S(T)$. Then $T \leq x (L)$ and $\mu \in I_{G}(L)$.

c) Suppose that L satisfies condition (1). Let $T \in \mathcal{F}_{G}(L)$ and define $T(L) = T(V_{G}(L))$, $L \in L$. If $L \nsubseteq \emptyset$, $L \in L$ then $V_{G}(L) \nsubseteq \emptyset$ and $T(V_{G}(L)) \rightarrow 0$, i.e., $T \in \mathcal{F}_{G}(L)$. By condition (1), there exists $\nu \in I_{G}(L)$ such that $T \leq \nu (L)$. Hence $\nu \in I_{G}(L)$ and $T \leq \nu$ on $U_{G}(L)$, where $\nu(V_{G}(L)) = \nu(L)$. Therefore $U_{G}(L)$ satisfies condition (1). Next, we show that $U_{G}(L)$ is prime complete. For this, let $S(\nu') = \bigcap_{L \in L} \nu(L) \in V_{G}(L)$. But
\[\gamma'(V_\mathcal{G}(L)) = 1 \iff \mathcal{G}(L) = \{ \mu \in \mathcal{L} \mid \mu(L) = 1, L \in \mathcal{L} \}. \]

Hence \(V_\mathcal{G}(L) \neq \emptyset \) which implies \(S(\gamma') \neq \emptyset \). Now, \(V_\mathcal{G}(L) \) satisfies condition (1) and prime complete implies \(V_\mathcal{G}(L) \) Lindelöf and then \(\mathcal{G}(L) \) is Lindelöf.

Conversely, let \((V_\mathcal{G}(L), \mathcal{G}(L)) \) be Lindelöf. Let \(\mathcal{G}(L) \) and define \(\gamma'(V_\mathcal{G}(L)) = \mathcal{G}(L), L \in \mathcal{L}. \) Then \(V_\mathcal{G}(L) \) implies \(L \neq \emptyset \) and \(\mathcal{G}(L) = \mathcal{G}(L) \rightarrow 0 \), hence \(\mathcal{G}(L) \) and \(\mathcal{G}(L) \) Lindelöf implies \(\mathcal{G}(L) \) Lindelöf and then \(\mathcal{G}(L) \) satisfies condition (1); hence there exists \(\gamma \in \mathcal{G}(V_\mathcal{G}(L)) \) such that \(\gamma \leq \gamma' (V_\mathcal{G}(L)) \), where \(\gamma'(V_\mathcal{G}(L)) = \gamma(L), L \in \mathcal{L} \). \(\gamma(L) = 1 \) implies \(\gamma'(V_\mathcal{G}(L)) = 1 \) and then \(\gamma(V_\mathcal{G}(L)) = 1 \) i.e. \(\gamma(L) = 1, L \in \mathcal{L} \). Hence \(\gamma \leq \gamma'(L) \).

\section*{4. ON PRIME COMPLETE AND COUNTABLY COMPACT LATTICES}

In this section we investigate the equivalence and consequences of stronger lattice completeness assumption.

\textbf{Theorem 4.1} Let \(\mathcal{L} \) be a disjunctive lattice. \(\mathcal{G}(L) \) is prime complete iff for \(\mu \in \mathcal{G}(L) \) there exists \(\gamma \in \mathcal{G}(L) \) such that \(\mu \leq \gamma(L) \).

Proof. Let \(\mu \in \mathcal{G}(L) \) and the associated \(\mu' \) defined by \(\mu'(V_\mathcal{G}(L)) = \mu(L), L \in \mathcal{L}. \) If \(\mathcal{G}(L) \) is prime complete, \(\gamma \in \mathcal{G}(L) \) and then there exists \(\gamma \in \mathcal{G}(\mu'), \gamma \in \mathcal{G}(L) \) and it follows that \(\mu \leq \gamma(L) \). Conversely, let \(\mu \in \mathcal{G}(V_\mathcal{G}(L)) \) and consider the associated \(\mu \in \mathcal{G}(L) \) such that \(\mu'(V_\mathcal{G}(L)) = \mu(L). \) For \(\mu \in \mathcal{G}(L) \), there exists \(\gamma \in \mathcal{G}(L) \) such that \(\mu \leq \gamma(L) \). Therefore \(\gamma \in \mathcal{G}(\mu') \) and \(\mu \leq \gamma'(V_\mathcal{G}(L)) \) which implies \(\gamma \in \mathcal{G}(L) \) and since \(\mathcal{G}(L) \) is replete, \(\gamma \in \mathcal{G}(L) \).

\textbf{Theorem 4.2}

a) Let \(\mathcal{L} \) be disjunctive, almost countably compact and mildly normal and let \(V_\mathcal{G}(L) \) be prime complete. Then \(\mathcal{L} \) is countably compact.

b) Let \(\mathcal{L} \) be disjunctive, regular, Lindelöf, almost countably compact and let \(V_\mathcal{G}(L) \) be prime complete. Then \(\mathcal{L} \) is countably compact.
Proof. a) Must show that $I_R(L) = I_{R^L}(L)$. Let $\mu \in I_R(L)$; we have $\mu \leq \gamma(L')$ where $\gamma \in I_R(L')$. Since L is almost countably compact we have $\gamma \leq \mu(L)$ with $\mu \in I_R(L)$ and $\gamma \in I_0(L)$. But $\gamma \in I_0(L)$ is prime complete and by Theorem 4.1 there exists $\gamma \in I_0(L)$ such that $\gamma \leq \gamma(L)$.

L almost countably compact and mildly normal implies L normal (see [4]). By the normality of L the L-regular measure μ such that $\gamma \leq \mu$ must be unique, hence $\mu = \gamma \in I_0(L)$.

b) L regular and Lindelöf implies L mildly normal and by the above result, it follows that L is countably compact.

Theorem 4.3 Suppose $I_0(L)$, $\gamma(L)$ is T_1 and L is disjunctive and $\gamma(L)$ prime complete. Then $I_0(L) = I_{R^L}(L)$.

Proof. Since $I_0(L)$, $\gamma(L)$ is T_1, given μ_1, μ_2 with $\mu_1, \mu_2 \in I_0(L)$, there exist $L_1, L_2 \in L$ such that $\mu_1 \in \gamma(L_1), \mu_2 \in \gamma(L_1)$ and $\mu_1 \in \gamma(L_2), \mu_2 \in \gamma(L_2)$. Therefore $\mu_1(L_1) = 1, \mu_2(L_1) = 0$ or $\mu_1(L_1) = 0, \mu_2(L_1) = 1$ and $\mu_1(L_2) = 1, \mu_2(L_2) = 0$ or $\mu_1(L_2) = 0, \mu_2(L_2) = 1$.

Since $\gamma(L)$ prime complete, given $\mu \in I_0(L)$ there exists $\gamma \in I_0(L)$ with $\gamma \leq \gamma(L)$, i.e. $\mu \leq \gamma$, by above there exists $L \in L$ such that $\gamma(L) = 0$ and $\mu(L) = 1$.

This is a contradiction, hence $\mu = \gamma$, and $I_0(L) = I_{R^L}(L)$.

Definition 4.1 Let $\mu \in I(L), E \subseteq X$ and define

$$
\mu^*(E) = \inf \left\{ \mu \left(L_1 \right), E \subseteq \bigcup_{i=1}^{L_1}, L_i \in L \right\} = \inf \left\{ \mu \left(L' \right), E \subseteq L', L_1 \in L \right\}.
$$

Definition 4.2 Let $\mu \in I_0(L), E \subseteq X$ and define

$$
\mu''(E) = \inf \left\{ \mu \left(L_1 \right), E \subseteq \bigcup_{i=1}^{L_1}, L_i \in L \right\}.
$$

Clearly, μ' is a finitely subadditive outer measure and μ'' is an outer measure (see [7]). Let μ'' be the set of μ''-measurable sets, where E is measurable with respect to μ'' if for any

$$
A \subseteq X, \mu''(A) = \mu''(A \cap E) + \mu''(A \cap E').
$$
Theorem 4.4

Let \(\mu \in \mathcal{I}(\mathcal{L}) \). Suppose \(\mathcal{L} \subseteq \mathcal{F}^\mu \) and \(\mathcal{L} \) semiseparates \(T(\mathcal{L}) \). Then \(\mu \in \mathcal{F}^\mu(\mathcal{L}) \) and \(\mu^\prime \mid \mathcal{A}(\mathcal{L}) \in \mathcal{I}^\mu(\mathcal{L}) \).

Proof. Let \(\mu \in \mathcal{I}(\mathcal{L}) \). Then we have \(\mathcal{L} \subseteq \mathcal{F}^\mu \) and \(\mathcal{L} \subseteq \mathcal{F}^\mu \) which is closed under complement and countable unions (see [7]). Therefore \(\mathcal{A}(\mathcal{L}) \subseteq \mathcal{F}^\mu \). \(\mu^\prime \mid \mathcal{A}(\mathcal{L}) \) is then a measure on \(\mathcal{A}(\mathcal{L}) \).

\(\mu^\prime \) countably additive implies \(\mu^\prime \mid \mathcal{A}(\mathcal{L}) \in \mathcal{I}(\mathcal{L}) \). To show that \(\mathcal{L} \), assume \(\mu^\prime(\mathcal{A}')=1 \), \(\mathcal{A} \in \mathcal{L} \). Then there exist \(\{L_n\} \), \(L_n \in \mathcal{L} \) such that \(\mathcal{A} \supseteq \bigcap L_n \) and \(\mu(L_n)=1 \) for all \(n \).

But \(\bigcap L_n \in \mathcal{L} \) and \(\mathcal{A} \cap (\bigcap L_n)=\emptyset \). Hence by semiseparation there exists \(L \in \mathcal{L} \) such that \(\mathcal{A} \cap L=\emptyset \, \text{or} \, \mathcal{A} \cap A' \) and \(\bigcap L_n \subseteq \mathcal{L} \). May assume \(\mathcal{L} \) and then \(\mu^\prime(\bigcap L_n)=1 \). We then have \(\bigcap L_n \subseteq \mathcal{L} \subseteq \mathcal{A}' \) which implies \(\mu^\prime(\mathcal{L})=1 \), i.e. \(\mu^\prime \mid \mathcal{A}(\mathcal{L}) \in \mathcal{I}(\mathcal{L}) \).

5. STRONGLY \(\mathcal{G} \)-SMOOTH MEASURES

Here we consider another general Wallman space and analyze the relevant lattice in detail.

Definition 5.1

A measure \(\mu \in \mathcal{I}(\mathcal{L}) \) is strongly \(\mathcal{G} \)-smooth on \(\mathcal{L} \) iff for any sequence \(\{L_n\} \), \(L_n \in \mathcal{L} \), \(n, \Psi \), if \(\bigcap L_n \in \mathcal{L} \) then

\[\mu \left(\bigcap L_n \right) = \inf_{n} \mu(L_n) = \lim_{n \to \infty} \mu(L_n). \]

We denote \(\mathcal{J}(\mathcal{L}) \) the set of strongly \(\mathcal{G} \)-smooth nontrivial zero-one valued measures on \(\mathcal{L} \).

Definition 5.2

The lattice \(\mathcal{L} \) is weakly prime complete if for \(\mu \in \mathcal{J}(\mathcal{L}) \), \(S(\mu) \neq \emptyset \).

Now define the following condition:

(2) For any \(\mathcal{F} \in \mathcal{F}'(\mathcal{L}) \) there exists \(\gamma \in \mathcal{J}(\mathcal{L}) \) such that \(\mathcal{F} \supseteq \gamma \mathcal{L}(\mathcal{L}) \).
We summarize a few notes on \mathcal{G}-smoothness that will be used throughout this section for the reader's convenience (see [6]).

a) $I_\sigma(\mathcal{L}) \subset J(\mathcal{L}) \subset I_\delta(\mathcal{L})$

b) \mathcal{L} normal and complement generated implies $J(\mathcal{L}) \subset I_\delta(\mathcal{L})$

c) $\mu \in I_\sigma(\mathcal{L})$ and $\mu' \in \mu''(\mathcal{L'})$ implies $\mu \in J(\mathcal{L})$.

d) Since $\mu \in I_\sigma(\mathcal{L})$ implies $\mu' = \mu''(\mathcal{L'})$, it follows that $\mu \in J(\mathcal{L})$ and then $I_\sigma(\mathcal{L}) \subset J(\mathcal{L})$.

Theorem 5.1

a) If condition (2) holds and if \mathcal{L} is weakly prime complete then \mathcal{L} is Lindelöf.

b) If \mathcal{L} is Lindelöf then condition (2) holds.

Proof. Omitted.

Theorem 5.2 Define $\mathcal{V}_j(\mathcal{L}) = \{ \mathcal{V}_j(L) / L \in \mathcal{L} \}$ where

$v_j(L) = \{ \mu \in J(\mathcal{L}) / \mu(L) = 1, L \in \mathcal{L} \}$. Then \mathcal{L} satisfies condition (2) if $\mathcal{V}_j(\mathcal{L})$ is Lindelöf.

Proof. Suppose \mathcal{L} satisfies condition (2). We show that $\mathcal{V}_j(\mathcal{L})$ satisfies condition (2). For this, let $\forall \mathcal{V}_j(\mathcal{L})$ and define $\forall(L) = \forall(v_j(L)), L \in \mathcal{L}$. If $L_n \not\in \mathcal{L}$ then $v_j(L_n) \not\in \mathcal{L}$ and $\lim n(L_n) = \lim n(v_j(L_n)) = 0$, hence $\forall \in \mathcal{V}_j(\mathcal{L})$.

By condition (2) there exists $\forall \in \mathcal{V}_j(\mathcal{L})$ such that $\forall \leq v_j(\mathcal{L})$. Hence $\forall \in \mathcal{V}_j(\mathcal{L})$ and $\forall \mathcal{V}_j(\mathcal{L})$ where $\forall(v_j(L)) = \forall(L), L \in \mathcal{L}$. For $\forall \in \mathcal{V}_j(\mathcal{L})$, there exists $\forall \mathcal{V}_j(\mathcal{L})$ such that

Next we show that $\mathcal{V}_j(\mathcal{L})$ is weakly prime complete, let

$\forall(\mathcal{V}_j(L)) = \bigcup \{ v_j(L) / \forall(v_j(L)) = 1, L \in \mathcal{L} \}$. $\forall(\mathcal{V}_j(L)) = 1$ if $\forall(\mathcal{V}_j(L)) = 1$ if $\forall \in v_j(L)$ where $\bigcup \{ \mu \in J(\mathcal{L}) / \mu(L) = 1, L \in \mathcal{L} \}$.

Hence $\forall(v_j(L)) = \forall(L)$ implies $\forall(\mathcal{V}_j(L)) = \forall(L)$. Therefore $\forall \in \mathcal{V}_j(\mathcal{L})$ is Lindelöf, and then $\mathcal{V}_j(\mathcal{L})$ is Lindelöf.

Conversely, assume (J(\mathcal{L}), $\mathcal{V}_j(\mathcal{L})$) is Lindelöf and let $\forall \in \mathcal{V}_j(\mathcal{L})$.

Define $\forall'(v_j(L)) = \forall(L), L \in \mathcal{L}$.

Then $\forall'(v_j(L))$ which implies $\forall' \mathcal{V}_j(\mathcal{L})$ and $\lim n(L) = \lim n(v_j(L)) = 0$ i.e. $\forall' \in \mathcal{V}_j(\mathcal{L})$.

Thus $\forall \mathcal{V}_j(\mathcal{L})$ Lindelöf, then $\forall \mathcal{V}_j(\mathcal{L})$ Lindelöf, then $\forall \mathcal{V}_j(\mathcal{L})$ satisfies condition (2). Hence there exists $\forall \mathcal{V}_j(\mathcal{L})$ such that $\forall \mathcal{V}_j(\mathcal{L})$ on $\forall \mathcal{V}_j(\mathcal{L})$, where $\forall'(v_j(L)) = \forall(L), L \in \mathcal{L}$. Therefore $\forall \mathcal{V}_j(\mathcal{L})$.

Theorem 5.3 Consider \(J(L) \) and \(V_j(L) \). \(V_j(L) \) is regular iff for all \(\mu_1, \mu_2 \in \mathcal{I}(L) \) and \(\nu \in J(L) \), if \(\mu_1 \leq \mu_2 \) and \(\mu_1 \leq \nu_j(L) \) then \(\mu_2 \leq \nu_j(L) \).

Proof. For \(\mu_1, \mu_2 \in \mathcal{I}(L) \) we have \(\mu_1, \mu_2 \in \mathcal{I}(L) \) and then \(\mu_1, \mu_2 \in \mathcal{I}(V_j(L)) \), \(\mu_1(V_j(L)) = \mu_1(L) \) and \(\mu_2(V_j(L)) = \mu_2(L) \). If \(V_j(L) \) is regular then \(S(\mu_1) = S(\mu_2) \), where \(S(\mu_1) = \{ \nu_j(L) \in V_j(L) : \mu_1(V_j(L)) = 1 \} \). Let \(\nu \in J(L) \); \(\nu \in \mathcal{I}(V_j(L)) \) and \(\mu_1 \leq \nu \) on \(V_j(L) \).

Then \(\nu \in S(\mu_1) \) i.e. \(\mu_2 \leq \nu \) (L).

Conversely, suppose \(\mu_1, \mu_2 \in \mathcal{I}(L) \) and \(\nu \in J(L) \) such that if \(\mu_1 \leq \mu_2 \) and \(\mu_2 \in \mathcal{I}(V_j(L)) \) and \(\mu_1 \leq \nu \) on \(V_j(L) \). Then \(\lambda_1 = \mu_1 \) and \(\lambda_2 = \mu_2 \) with \(\mu_1, \mu_2 \in \mathcal{I}(L) \).

Thus \(\lambda_1 \leq \lambda_2 \) on \(V_j(L) \) which implies \(\mu_1 \leq \mu_2 \) on \(L \), hence \(S(\mu_2) \subseteq S(\mu_1) \). If \(\lambda \in S(\mu_1) \) then clearly \(\lambda \in J(L) \) and \(\mu_1 \leq \lambda \) (L).

By the condition of the statement, \(\mu_2 \leq \nu \) (L) and then \(\lambda \in S(\mu_2) \)

Hence \(S(\mu_2) = S(\mu_1) \) and \(V_j(L) \) is regular.

Theorem 5.4 Consider \(J(L) \), \(V_j(L) \). If \(V_j(L) \) is regular, then \(J(L) = \mathcal{I}_R^R(L) \).

Proof. Let \(\mu \in J(L) \). Then there exists \(\nu \in \mathcal{I}_R(L) \) such that \(\mu \leq \nu \) (L), hence \(\mu \leq \nu \) on \(V_j(L) \), where \(\nu \in J(L) \) and \(\nu \in \mathcal{I}_R(V_j(L)) \). \(V_j(L) \) regular implies \(S(\mu') = S(\nu') \), therefore \(\nu \leq \mu' \) (L). Then \(\mu = \nu \) (L) and since \(\nu \in \mathcal{I}_R(L) \), \(J(L) \subseteq \mathcal{I}_R(L) \).

It follows that \(\mu \in \mathcal{I}_R(L) \), \(\mathcal{I}_R(L) \) and then \(\mu \in \mathcal{I}_R(L) \). Thus \(J(L) = \mathcal{I}_R(L) \).

Theorem 5.5 Consider \(J(L) \) and \(V_j(L) \), with \(L \) Lindelöf.

If for all \(\mu_1, \mu_2 \in \mathcal{I}(L) \) and \(\nu \in J(L) \) such that \(\mu_1 \leq \mu_2 \) and \(\mu_1 \leq \nu \) (L) then \(\mu_2 \leq \nu \) (L) it follows that \(V_j(L) \) is slightly and mildly normal.

Proof. By Theorem 5.3 \(V_j(L) \) is regular. We show as in Remark of Theorem 3.1 that \(V_j(L) \) is Lindelöf and then, \(V_j(L) \) being regular and Lindelöf, it follows that it is also slightly and mildly normal.
REFERENCES

